IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v209y2018icp123-133.html
   My bibliography  Save this article

An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation

Author

Listed:
  • Zhang, Fan
  • Zhang, Chenglong
  • Yan, Zehao
  • Guo, Shanshan
  • Wang, Youzhi
  • Guo, Ping

Abstract

Nonlinear and conflicting objectives as well as complex uncertainties are commonly encountered by irrigation-water managers. To address such problems, an interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint (FIC-INMP) is proposed for crop water allocation. The FIC-INMP model integrating interval programming, nonlinear multiobjective programming and fuzzy-interval credibility-constrained programming could address not only the conflicts of multiple nonlinear objectives under interval uncertainty, but also the fuzziness expressed as fuzzy-interval membership function. Moreover, an interval fuzzy weighted (IFW) method is proposed to solve developed model by integrating fuzzy weighted programming approach and interval Zimmermann fuzzy method. The FIC-INMP and IFW are applied to Yingke Irrigation District to plan crop monthly water allocation and demonstrate their applicability. By fully considering the main factors in allocation, including concerns of different decision makers, normal growth of crops, local water balance and uncertainties existing in allocation, optimal crop water-allocation schemes can be obtained via the FIC-INMP and IFW. The optimal results offer abundant schemes to decision makers by trading off benefit and risk. In addition, from the comparison between single objective and multiobjective model, the multiobjective model shows better practicality due to more reasonable water allocation in critical water demand period of crops. These results can effectively contribute to the local irrigation water management and ecological restoration.

Suggested Citation

  • Zhang, Fan & Zhang, Chenglong & Yan, Zehao & Guo, Shanshan & Wang, Youzhi & Guo, Ping, 2018. "An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation," Agricultural Water Management, Elsevier, vol. 209(C), pages 123-133.
  • Handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:123-133
    DOI: 10.1016/j.agwat.2018.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418310692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, X.M. & Lu, H.W. & Li, J. & Du, P. & Xu, M. & He, L., 2015. "A modified fuzzy credibility constrained programming approach for agricultural water resources management—A case study in Urumqi, China," Agricultural Water Management, Elsevier, vol. 156(C), pages 79-89.
    2. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    3. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    4. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    5. Dong Liu & Wenting Liu & Qiang Fu & Yongjia Zhang & Tianxiao Li & Khan M. Imran & Faiz M. Abrar, 2017. "Two-Stage Multi-Water Sources Allocation Model in Regional Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3607-3625, September.
    6. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Zhang, Fan & Guo, Shanshan & Liu, Xiao & Wang, Youzhi & Engel, Bernard A. & Guo, Ping, 2020. "Towards sustainable water management in an arid agricultural region: A multi-level multi-objective stochastic approach," Agricultural Systems, Elsevier, vol. 182(C).
    3. Mostafa Mardani Najafabadi & Niloofar Ashktorab, 2023. "Mathematical programming approaches for modeling a sustainable cropping pattern under uncertainty: a case study in Southern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9731-9755, September.
    4. Gong, Xinghui & Zhang, Hongbo & Ren, Chongfeng & Sun, Dongyong & Yang, Jiantao, 2020. "Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    6. Zhang, Fan & Guo, Ping & Engel, Bernard A. & Guo, Shanshan & Zhang, Chenglong & Tang, Yikuan, 2019. "Planning seasonal irrigation water allocation based on an interval multiobjective multi-stage stochastic programming approach," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Zhang, Zepeng & Wang, Qingzheng & Guan, Qingyu & Xiao, Xiong & Mi, Jimin & Lv, Songjian, 2023. "Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization," Agricultural Water Management, Elsevier, vol. 279(C).
    8. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Xu, Ye & Tan, Junyuan & Wang, Xu & Li, Wei & He, Xing & Hu, Xiaoguang & Fan, Yurui, 2022. "Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Abbas Mirzaei & Mansour Zibaei, 2021. "Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 1-21, January.
    11. Tang, Yikuan & Zhang, Fan & Wang, Sufen & Zhang, Xiaodong & Guo, Shanshan & Guo, Ping, 2019. "A distributed interval nonlinear multiobjective programming approach for optimal irrigation water management in an arid area," Agricultural Water Management, Elsevier, vol. 220(C), pages 13-26.
    12. Zhang, Fan & Cai, Yanpeng & Tan, Qian & Wang, Xuan, 2021. "Spatial water footprint optimization of crop planting: A fuzzy multiobjective optimal approach based on MOD16 evapotranspiration products," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yikuan & Zhang, Fan & Wang, Sufen & Zhang, Xiaodong & Guo, Shanshan & Guo, Ping, 2019. "A distributed interval nonlinear multiobjective programming approach for optimal irrigation water management in an arid area," Agricultural Water Management, Elsevier, vol. 220(C), pages 13-26.
    2. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    3. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    4. Jingtao Qin & Xiaosen Wang & Xichao Fan & Mingliang Jiang & Mouchao Lv, 2022. "Whether Increasing Maize Planting Density Increases the Total Water Use Depends on Soil Water in the 0–60 cm Soil Layer in the North China Plain," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    5. Rotili, Diego Hernán & Giorno, Agustín & Tognetti, Pedro Maximiliano & Maddonni, Gustavo Ángel, 2019. "Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management," Agricultural Water Management, Elsevier, vol. 226(C).
    6. Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
    7. Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Zhang, Chenglong & Li, Xuemin & Guo, Ping & Huo, Zailin, 2020. "An improved interval-based fuzzy credibility-constrained programming approach for supporting optimal irrigation water management under uncertainty," Agricultural Water Management, Elsevier, vol. 238(C).
    9. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    10. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    11. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    13. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    14. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    15. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    16. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    17. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
    18. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    19. Yizhong Chen & Hongwei Lu & Jing Li & Pengdong Yan & He Peng, 2021. "Multi-Level Decision-Making for Inter-Regional Water Resources Management with Water Footprint Analysis and Shared Socioeconomic Pathways," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 481-503, January.
    20. Riccardo Lo Bianco & Mark Rieger, 2017. "Transpiration/Evaporation Ratio in Prunus Fremontii and Marianna 2624 over a 4-Day Period of Drought," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 7(4), pages 96-99, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:123-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.