IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i4p755-774.html
   My bibliography  Save this article

Spatial Analysis of Water Use in Oregon, USA, 1985–2005

Author

Listed:
  • Jon Franczyk
  • Heejun Chang

Abstract

Water use patterns are not distributed evenly over space and time. Determining the amount of water used within a region, as well as the various ways in which water is used is important for making adequate and sustainable water management policies and determining future water availability. We examined differences in spatial trends in Oregon freshwater use (total, municipal, and agricultural water withdrawals), by county, between the years 1985 and 2005. We also explored biophysical and socioeconomic factors that explain spatial patterns using Moran’s I, local index of spatial autocorrelation (LISA), and spatial regression models. There was a moderate positive spatial autocorrelation among counties that had similar total and irrigation withdrawals. LISA analysis identified hot spots between certain arid agricultural counties in the southeastern Oregon and cold spots between certain humid northwestern counties, including within the Portland metro area. Annual precipitation and income are negatively associated with total water withdrawals. Summer temperature and farm size is positively associated with irrigation water withdrawals, while net cash return and income are negatively associated with irrigation water withdrawals. When compared to ordinary least square regression models, spatial error models that take into account spatial dependence provide a more comprehensive explanation of the variations of water use, suggesting that water resource planning and management should incorporate spatial and neighborhood effects to effective manage limited natural resources. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Jon Franczyk & Heejun Chang, 2009. "Spatial Analysis of Water Use in Oregon, USA, 1985–2005," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 755-774, March.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:755-774
    DOI: 10.1007/s11269-008-9298-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9298-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9298-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Griffith & David Wong, 2007. "Modeling population density across major US cities: a polycentric spatial regression approach," Journal of Geographical Systems, Springer, vol. 9(1), pages 53-75, April.
    2. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    3. Ana Iglesias & Luis Garrote & Francisco Flores & Marta Moneo, 2007. "Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 775-788, May.
    4. מחקר - ביטוח לאומי, 2006. "Annual Survey 2005," Working Papers 15, National Insurance Institute of Israel.
    5. Elizabeth Wentz & Patricia Gober, 2007. "Determinants of Small-Area Water Consumption for the City of Phoenix, Arizona," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1849-1863, November.
    6. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    7. Matthias Ruth & Clark Bernier & Nigel Jollands & Nancy Golubiewski, 2007. "Adaptation of urban water supply infrastructure to impacts from climate and socioeconomic changes: The case of Hamilton, New Zealand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 1031-1045, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    2. Y. Farzin & Kelly Grogan, 2013. "Socioeconomic factors and water quality in California," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(1), pages 1-37, January.
    3. Zachary, James C. & Rehkamp, Sarah, 2024. "Estimating U.S. subnational freshwater withdrawals by water use category from 1995 to 2021," 2024 Annual Meeting, July 28-30, New Orleans, LA 343764, Agricultural and Applied Economics Association.
    4. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    5. Diego Maria André & José Carvalho, 2014. "Spatial Determinants of Urban Residential Water Demand in Fortaleza, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2401-2414, July.
    6. Brandon Moore & André Coleman & Mark Wigmosta & Richard Skaggs & Erik Venteris, 2015. "A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5185-5200, November.
    7. Bich-Ngoc, Nguyen & Prevedello, Cédric & Cools, Mario & Teller, Jacques, 2022. "Factors influencing residential water consumption in Wallonia, Belgium," Utilities Policy, Elsevier, vol. 74(C).
    8. Jinglu Wu & Haiao Zeng & Hong Yu & Long Ma & Longsheng Xu & Boqiang Qin, 2012. "Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3601-3618, September.
    9. Azar Niknam & Hasan Khademi Zare & Hassan Hosseininasab & Ali Mostafaeipour & Manuel Herrera, 2022. "A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use?," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    10. Sarah Rehkamp & James Chandler Zachary, 2024. "Estimating U.S. Subnational Freshwater Withdrawals by Water Use Category from 1995 to 2021," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5615-5628, November.
    11. Bors, Julijana & O’Brien, Katherine R. & Kenway, Steven J. & Lant, Paul A., 2017. "Regional-scale variability of cold water temperature: Implications for household water-related energy demand," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 107-115.
    12. Edward Gage & David Cooper, 2015. "The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3877-3890, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negin Ashoori & David A. Dzombak & Mitchell J. Small, 2016. "Modeling the Effects of Conservation, Demographics, Price, and Climate on Urban Water Demand in Los Angeles, California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5247-5262, November.
    2. Henders, Sabine & Ostwald, Madelene, 2014. "Accounting methods for international land-related leakage and distant deforestation drivers," Ecological Economics, Elsevier, vol. 99(C), pages 21-28.
    3. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    4. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    5. Saikku, Laura & Rautiainen, Aapo & Kauppi, Pekka E., 2008. "The sustainability challenge of meeting carbon dioxide targets in Europe by 2020," Energy Policy, Elsevier, vol. 36(2), pages 730-742, February.
    6. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    7. Giuseppe Rossi & Enrica Caporali & Luis Garrote, 2012. "Definition of Risk Indicators for Reservoirs Management Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 981-996, March.
    8. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    9. Nadjib Drouiche & Noreddine Ghaffour & Mohamed Naceur & Hacene Mahmoudi & Tarik Ouslimane, 2011. "Reasons for the Fast Growing Seawater Desalination Capacity in Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2743-2754, September.
    10. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    11. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    12. Mazzanti, Massimiliano & Montini, Anna & Zoboli, Roberto, 2006. "Municipal Waste Production, Economic Drivers, and 'New' Waste Policies: EKC Evidence from Italian Regional and Provincial Panel Data," Climate Change Modelling and Policy Working Papers 12053, Fondazione Eni Enrico Mattei (FEEM).
    13. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    14. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Ramos-Martin, Jesus, 2003. "Empiricism in ecological economics: a perspective from complex systems theory," Ecological Economics, Elsevier, vol. 46(3), pages 387-398, October.
    16. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    17. Ying-Jung Chen & Joseph McFadden & Keith Clarke & Dar Roberts, 2015. "Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5749-5763, December.
    18. Benjamin Leard, 2011. "Joan Martinez-Alier and Ingo Ropke (eds.): Recent developments in ecological economics (2 vols.)," Journal of Bioeconomics, Springer, vol. 13(2), pages 161-178, July.
    19. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    20. Martin B. Hackmann & Jonathan T. Kolstad & Amanda E. Kowalski, 2012. "Health Reform, Health Insurance, and Selection: Estimating Selection into Health Insurance Using the Massachusetts Health Reform," American Economic Review, American Economic Association, vol. 102(3), pages 498-501, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:755-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.