IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i4p697-720.html
   My bibliography  Save this article

Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing

Author

Listed:
  • Panuwat Pinthong
  • Ashim Das Gupta
  • Mukand Babel
  • Sutat Weesakul

Abstract

A hybrid genetic and neurofuzzy computing algorithm was developed to enhance efficiency of water management for a multipurpose reservoir system. The genetic algorithm was applied to search for the optimal input combination of a neurofuzzy system. The optimal model structure is modified using the selection index (SI) criterion expressed as the weighted combination of normalized values of root mean square error (RMSE) and maximum absolute percentage of error (MAPE). The hybrid learning algorithm combines the gradient descent and the least-square methods to train the genetic-based neurofuzzy network by adjusting the parameters of the neurofuzzy system. The applicability of this modeling approach is demonstrated through an operational study of the Pasak Jolasid Reservoir in Pasak River Basin, Thailand. The optimal reservoir releases are determined based on the reservoir inflow, storage stage, sideflow, diversion flow from the adjoining basin, and the water demand. Reliability, vulnerability and resiliency are used as indicators to evaluate the model performance in meeting objectives of satisfying water demand and maximizing flood prevention. Results of the performance evaluation indicate that the releases predicted by the genetic-based neurofuzzy model gave higher reliability for water supply and flood protection compared to the actual operation, the releases based on simulation following the current rule curve, and the predicted releases based on other approaches such as the fuzzy rule-based model and the neurofuzzy model. Also the predicted releases based on the newly developed approach result in the lowest amount of deficit and spill indicating that the developed modeling approach would assist in improved operation of Pasak Jolasid Reservoir. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Panuwat Pinthong & Ashim Das Gupta & Mukand Babel & Sutat Weesakul, 2009. "Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 697-720, March.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:697-720
    DOI: 10.1007/s11269-008-9295-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9295-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9295-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Chandramouli & Paresh Deka, 2005. "Neural Network Based Decision Support Model for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 447-464, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    2. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    3. Li Chuangang & Ji Changming & Wang Boquan & Liu Minghao & Li Rongbo, 2017. "The Hydropower Station Output Function and its Application in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 159-172, January.
    4. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    5. Joao Brandão, 2010. "Performance of the Equivalent Reservoir Modelling Technique for Multi-Reservoir Hydropower Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3101-3114, September.
    6. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    7. Seyed Akrami & Ahmed El-Shafie & Othman Jaafar, 2013. "Improving Rainfall Forecasting Efficiency Using Modified Adaptive Neuro-Fuzzy Inference System (MANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3507-3523, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    2. Yi-min Wang & Jian-xia Chang & Qiang Huang, 2010. "Simulation with RBF Neural Network Model for Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2597-2610, September.
    3. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    4. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    5. Maya Rajnarayan Ray & Arup Kumar Sarma, 2016. "Influence of Time Discretization and Input Parameter on the ANN Based Synthetic Streamflow Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4695-4711, October.
    6. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    7. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    8. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    9. Leila Ostadrahimi & Miguel Mariño & Abbas Afshar, 2012. "Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 407-427, January.
    10. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    11. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    12. Murat Cobaner & Tefaruk Haktanir & Ozgur Kisi, 2008. "Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 757-774, June.
    13. Tan, Qiao-feng & Lei, Xiao-hui & Wen, Xin & Fang, Guo-hua & Wang, Xu & Wang, Chao & Ji, Yi & Huang, Xian-feng, 2019. "Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage," Energy, Elsevier, vol. 183(C), pages 670-682.
    14. S. Mohan & N. Ramsundram, 2016. "Predictive Temporal Data-Mining Approach for Evolving Knowledge Based Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3315-3330, August.
    15. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    16. Xiaoling Ding & Xiaocong Mo & Jianzhong Zhou & Sheng Bi & Benjun Jia & Xiang Liao, 2021. "Long-Term Scheduling of Cascade Reservoirs Considering Inflow Forecasting Uncertainty Based on a Disaggregation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 645-660, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:697-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.