IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i2p341-366.html
   My bibliography  Save this article

Ecological Water Requirement (EWR) Analysis of High Mountain and Steep Gorge (HMSG) River—Application to Upper Lancang–Mekong River

Author

Listed:
  • Hu Bo
  • Cui Baoshan
  • Dong Shikui
  • Zhai Hongjuan
  • Liu Zhaoyang

Abstract

As “corridor” in the south–north and “barrier” in the west–east direction, Lancang River, the upstream of Lancang–Mekong River, has an obvious spatial–temporal characteristic and unique regional attributes. Recently, the hydropower development of the mainstream along Lancang River has disturbed the regional ecosystem to have unstable factors, and threatened the ecosystem health. This paper used the couple model of Grading Coefficient of ecological water requirement (GCEWR) and the ecological runoff (ER) to simulate the ecological water requirement (EWR) of Lancang River, in a broad sense, this method belongs to hydrology–ecology methodology. In the GCEWR–ER, We adopted ecological characteristic indexes (ECI) and hydrological characteristic variables (e.g. variance index) to calculate the GCEWR, and used three methods to calculate the basic variable (e.g. ER) of EWR: the first method directly used annual average runoff as ER; the second method was used frequency method and took year as basic time unit, and the third method took season (e.g. flood season, non-flood season) as the basic time unit to evaluate ER. Finally, in order to demonstrate applicability of this developed methodology, this paper adopted GCEWR–ER method to calculate the EWR of Lancang River in the Longitudinal Range-Gorge Region. By the systematic analysis of the results, we could get the minimum, satisfying and optimal EWR for the Lancang River, which were 142.53 × 10 8 , 286.46 × 10 8 and 385.96 × 10 8 m 3 . The three EWR respectively occupied 25.10%, 50.46% and 67.98% of the average measured run-off (567.75 × 10 8 m 3 ) of the Lancang River, and respectively occupied 18.63%, 37.45% and 50.45% of the natural run-off (765 × 10 8 m 3 ) of the Lancang River. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Hu Bo & Cui Baoshan & Dong Shikui & Zhai Hongjuan & Liu Zhaoyang, 2009. "Ecological Water Requirement (EWR) Analysis of High Mountain and Steep Gorge (HMSG) River—Application to Upper Lancang–Mekong River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(2), pages 341-366, January.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:2:p:341-366
    DOI: 10.1007/s11269-008-9278-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9278-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9278-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayasuriya, Rohan T., 2004. "Modelling the regional and farm-level economic impacts of environmental flows for regulated rivers in NSW, Australia," Agricultural Water Management, Elsevier, vol. 66(1), pages 77-91, April.
    2. Jens Hartmann & Jason Levy & Norio Okada, 2006. "Managing Surface Water Contamination in Nagoya, Japan: An Integrated Water Basin Management Decision Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 411-430, June.
    3. Hong Wu & Leen-Kiat Soh & Ashok Samal & Xun-Hong Chen, 2008. "Trend Analysis of Streamflow Drought Events in Nebraska," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 145-164, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robyn Johnston & Matti Kummu, 2012. "Water Resource Models in the Mekong Basin: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 429-455, January.
    2. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    2. Weibin Zhang & Xiaochun Zha & Jiaxing Li & Wei Liang & Yugai Ma & Dongmei Fan & Sha Li, 2014. "Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4715-4732, October.
    3. M. Ejaz Qureshi & Jeff Connor & Mac Kirby & Mohammed Mainuddin, 2007. "Economic assessment of acquiring water for environmental flows in the Murray Basin ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 283-303, September.
    4. Ren, Zongming & Zeng, Yang & Fu, Xiu’e & Zhang, Gaosheng & Chen, Linlin & Chen, Jing & Chon, Tae-Soo & Wang, Yawei & Wei, Yuansong, 2013. "Modeling macrozooplankton and water quality relationships after wetland construction in the Wenyuhe River Basin, China," Ecological Modelling, Elsevier, vol. 252(C), pages 97-105.
    5. Mojtaba Shadmani & Safar Marofi & Majid Roknian, 2012. "Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman’s Rho Tests in Arid Regions of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 211-224, January.
    6. Marcos Rodrigues & Adrián Jiménez & Juan de la Riva, 2016. "Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2049-2070, December.
    7. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    8. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    9. Xingcai Liu & Zongxue Xu & Ruihong Yu, 2011. "Trend of climate variability in China during the past decades," Climatic Change, Springer, vol. 109(3), pages 503-516, December.
    10. Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
    11. Martin Volk & Jesko Hirschfeld & Gerd Schmidt & Carsten Bohn & Alexandra Dehnhardt & Stefan Liersch & Leo Lymburner, 2007. "A SDSS-based Ecological-economic Modelling Approach for Integrated River Basin Management on Different Scale Levels – The Project FLUMAGIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(12), pages 2049-2061, December.
    12. Mohamad Fulazzaky, 2009. "Water Quality Evaluation System to Assess the Brantas River Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3019-3033, November.
    13. Helmi Saidi & Marzia Ciampittiello & Claudia Dresti & Giorgio Ghiglieri, 2015. "Assessment of Trends in Extreme Precipitation Events: A Case Study in Piedmont (North-West Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 63-80, January.
    14. Gideon A. Nnaji & Clayton J. Clark & Amy B. Chan-Hilton & Wenrui Huang, 2016. "Drought prediction in Apalachicola–Chattahoochee–Flint River Basin using a semi-Markov model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 267-297, May.
    15. İsmail Dabanlı & Zekai Şen & Mehmet Öner Yeleğen & Eyüp Şişman & Bülent Selek & Yavuz Selim Güçlü, 2016. "Trend Assessment by the Innovative-Şen Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5193-5203, November.
    16. J. Villanueva & P. Coustumer & F. Huneau & M. Motelica-Heino & T.R. Perez & R. Materum & M.V.O. Espaldon & S. Stoll, 2013. "Assessment of Trace Metals during Episodic Events using DGT Passive Sampler: A Proposal for Water Management Enhancement," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4163-4181, September.
    17. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    18. Jenq-Tzong Shiau & Jia-Wei Lin, 2016. "Clustering Quantile Regression-Based Drought Trends in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1053-1069, February.
    19. Jingpeng Guo & Kebiao Mao & Yinghui Zhao & Zhong Lu & Xiaoping Lu, 2019. "Impact of Climate on Food Security in Mainland China: A New Perspective Based on Characteristics of Major Agricultural Natural Disasters and Grain Loss," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    20. Brian Thomas & James Famiglietti, 2015. "Sustainable Groundwater Management in the Arid Southwestern US: Coachella Valley, California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4411-4426, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:2:p:341-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.