IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1254-1267.html
   My bibliography  Save this article

Continuous time‐interaction processes for population size estimation, with an application to drug dealing in Italy

Author

Listed:
  • Linda Altieri
  • Alessio Farcomeni
  • Danilo Alunni Fegatelli

Abstract

We introduce a time‐interaction point process where the occurrence of an event can increase (self‐excitement) or reduce (self‐correction) the probability of future events. Self‐excitement and self‐correction are allowed to be triggered by the same event, at different timescales; other effects such as those of covariates, unobserved heterogeneity, and temporal dependence are also allowed in the model. We focus on capture‐recapture data, as our work is motivated by an original example about the estimation of the total number of drug dealers in Italy. To do so, we derive a conditional likelihood formulation where only subjects with at least one capture are involved in the inference process. The result is a novel and flexible continuous‐time population size estimator. A simulation study and the analysis of our motivating example illustrate the validity of our approach in several scenarios.

Suggested Citation

  • Linda Altieri & Alessio Farcomeni & Danilo Alunni Fegatelli, 2023. "Continuous time‐interaction processes for population size estimation, with an application to drug dealing in Italy," Biometrics, The International Biometric Society, vol. 79(2), pages 1254-1267, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1254-1267
    DOI: 10.1111/biom.13662
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13662
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bonnet, Anna & Martinez Herrera, Miguel & Sangnier, Maxime, 2021. "Maximum likelihood estimation for Hawkes processes with self-excitation or inhibition," Statistics & Probability Letters, Elsevier, vol. 179(C).
    2. Liqun Xi & Paul S. F. Yip & Ray Watson, 2007. "A Unified Likelihood-Based Approach for Estimating Population Size in Continuous-Time Capture–Recapture Experiments with Frailty," Biometrics, The International Biometric Society, vol. 63(1), pages 228-236, March.
    3. A. Farcomeni, 2016. "A general class of recapture models based on the conditional capture probabilities," Biometrics, The International Biometric Society, vol. 72(1), pages 116-124, March.
    4. Yang Liu & Yukun Liu & Pengfei Li & Jing Qin, 2018. "Full likelihood inference for abundance from continuous time capture–recapture data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 995-1014, November.
    5. A. Farcomeni, 2011. "Recapture models under equality constraints for the conditional capture probabilities," Biometrika, Biometrika Trust, vol. 98(1), pages 237-242.
    6. Matthew R. Schofield & Richard J. Barker & Nicholas Gelling, 2018. "Continuous†time capture–recapture in closed populations," Biometrics, The International Biometric Society, vol. 74(2), pages 626-635, June.
    7. Brent A. Coull & Alan Agresti, 1999. "The Use of Mixed Logit Models to Reflect Heterogeneity in Capture-Recapture Studies," Biometrics, The International Biometric Society, vol. 55(1), pages 294-301, March.
    8. Alessio Farcomeni, 2018. "Fully general Chao and Zelterman estimators with application to a whale shark population," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(1), pages 217-229, January.
    9. Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
    10. Hsin-Chou Yang & Anne Chao, 2005. "Modeling Animals' Behavioral Response by Markov Chain Models for Capture–Recapture Experiments," Biometrics, The International Biometric Society, vol. 61(4), pages 1010-1017, December.
    11. J. P. Fine, 2002. "Comparing nonnested Cox models," Biometrika, Biometrika Trust, vol. 89(3), pages 635-648, August.
    12. D. Y. Lin & P. S. F. Yip, 1999. "Parametric regression models for continuous time removal and recapture studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 401-411, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    2. Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
    3. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    4. Farcomeni, Alessio & Dotto, Francesco, 2021. "A correction to make Chao estimator conservative when the number of sampling occasions is finite," Statistics & Probability Letters, Elsevier, vol. 176(C).
    5. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    6. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    7. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.
    8. Yauck, Mamadou & Rivest, Louis-Paul, 2019. "On the estimation of population sizes in capture–recapture experiments," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 512-524.
    9. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    10. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    11. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    12. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    13. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    14. Paul S. F. Yip & Yan Wang, 2002. "A Unified Parametric Regression Model for Recapture Studies with Random Removals in Continuous Time," Biometrics, The International Biometric Society, vol. 58(1), pages 192-199, March.
    15. Francesco Bartolucci & Antonio Forcina, 2001. "Analysis of Capture-Recapture Data with a Rasch-Type Model Allowing for Conditional Dependence and Multidimensionality," Biometrics, The International Biometric Society, vol. 57(3), pages 714-719, September.
    16. Kenneth F. Kellner & Arielle W. Parsons & Roland Kays & Joshua J. Millspaugh & Christopher T. Rota, 2022. "A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 321-338, June.
    17. Duval, Céline & Luçon, Eric & Pouzat, Christophe, 2022. "Interacting Hawkes processes with multiplicative inhibition," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 180-226.
    18. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    19. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    20. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1254-1267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.