IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics0167715220301462.html
   My bibliography  Save this article

Innovated scalable dynamic learning for time-varying graphical models

Author

Listed:
  • Zheng, Zemin
  • Li, Liwan
  • Zhou, Jia
  • Kong, Yinfei

Abstract

In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix.

Suggested Citation

  • Zheng, Zemin & Li, Liwan & Zhou, Jia & Kong, Yinfei, 2020. "Innovated scalable dynamic learning for time-varying graphical models," Statistics & Probability Letters, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301462
    DOI: 10.1016/j.spl.2020.108843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    2. Teng Zhang & Hui Zou, 2014. "Sparse precision matrix estimation via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 101(1), pages 103-120.
    3. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    4. Liu, Weidong & Luo, Xi, 2015. "Fast and adaptive sparse precision matrix estimation in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 153-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahe Avagyan, 2022. "Precision matrix estimation using penalized Generalized Sylvester matrix equation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 950-967, December.
    2. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    3. Yang, Yihe & Dai, Hongsheng & Pan, Jianxin, 2023. "Block-diagonal precision matrix regularization for ultra-high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    4. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
    5. Zheng, Zemin & Shi, Haiyu & Li, Yang & Yuan, Hui, 2020. "Uniform joint screening for ultra-high dimensional graphical models," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    8. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    9. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    10. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    11. Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.
    12. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    13. Zhou, Jia & Zheng, Zemin & Zhou, Huiting & Dong, Ruipeng, 2021. "Innovated scalable efficient inference for ultra-large graphical models," Statistics & Probability Letters, Elsevier, vol. 173(C).
    14. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    16. Young-Geun Choi & Seunghwan Lee & Donghyeon Yu, 2022. "An efficient parallel block coordinate descent algorithm for large-scale precision matrix estimation using graphics processing units," Computational Statistics, Springer, vol. 37(1), pages 419-443, March.
    17. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
    18. Wei Dong & Hongzhen Liu, 2024. "Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
    19. Zamar, Rubén, 2015. "Ranking Edges and Model Selection in High-Dimensional Graphs," DES - Working Papers. Statistics and Econometrics. WS ws1511, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," Journal of Econometrics, Elsevier, vol. 206(1), pages 57-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.