IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v31y2022i2d10.1007_s11749-021-00782-y.html
   My bibliography  Save this article

Asymptotics for M-type smoothing splines with non-smooth objective functions

Author

Listed:
  • Ioannis Kalogridis

    (University of Leuven)

Abstract

M-type smoothing splines are a broad class of spline estimators that include the popular least-squares smoothing spline but also spline estimators that are less susceptible to outlying observations and model misspecification. However, available asymptotic theory only covers smoothing spline estimators based on smooth objective functions and consequently leaves out frequently used resistant estimators such as quantile and Huber-type smoothing splines. We provide a general treatment in this paper and, assuming only the convexity of the objective function, show that the least-squares (super-)convergence rates can be extended to M-type estimators whose asymptotic properties have not been hitherto described. We further show that auxiliary scale estimates may be handled under significantly weaker assumptions than those found in the literature and we establish optimal rates of convergence for the derivatives, which have not been obtained outside the least-squares framework. A simulation study and a real-data example illustrate the competitive performance of non-smooth M-type splines in relation to the least-squares spline on regular data and their superior performance on data that contain anomalies.

Suggested Citation

  • Ioannis Kalogridis, 2022. "Asymptotics for M-type smoothing splines with non-smooth objective functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 373-389, June.
  • Handle: RePEc:spr:testjl:v:31:y:2022:i:2:d:10.1007_s11749-021-00782-y
    DOI: 10.1007/s11749-021-00782-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-021-00782-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-021-00782-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression Coefficients in High Dimensional Linear Models I. Scale Dependent Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 211-239, November.
    2. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression-Coefficients in High Dimensional Linear Models II. Scale-Invariant Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 240-251, November.
    3. Cunningham, J. K. & Eubank, R. L. & Hsing, T., 1991. "M-type smoothing splines with auxiliary scale estimation," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 43-51, January.
    4. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    2. Ding, Hao & Wang, Zhanfeng & Wu, Yaohua, 2017. "Tobit regression model with parameters of increasing dimensions," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 1-7.
    3. Yingying Jiang & Fuming Lin & Yong Zhou, 2021. "The kth power expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 83-113, February.
    4. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    5. Miaomiao Wang & Xinyu Zhang & Alan T. K. Wan & Kang You & Guohua Zou, 2023. "Jackknife model averaging for high‐dimensional quantile regression," Biometrics, The International Biometric Society, vol. 79(1), pages 178-189, March.
    6. Zhou, Ping & Yu, Zhen & Ma, Jingyi & Tian, Maozai & Fan, Ye, 2021. "Communication-efficient distributed estimator for generalized linear models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    7. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    8. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    9. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    10. Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
    11. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    12. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    13. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    14. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    15. Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
    16. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    17. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    18. Marinho Bertanha & Eunyi Chung, 2023. "Permutation Tests at Nonparametric Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2833-2846, October.
    19. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    20. Jing Sun, 2016. "Composite quantile regression for single-index models with asymmetric errors," Computational Statistics, Springer, vol. 31(1), pages 329-351, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:31:y:2022:i:2:d:10.1007_s11749-021-00782-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.