IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p178-189.html
   My bibliography  Save this article

Jackknife model averaging for high‐dimensional quantile regression

Author

Listed:
  • Miaomiao Wang
  • Xinyu Zhang
  • Alan T. K. Wan
  • Kang You
  • Guohua Zou

Abstract

In this paper, we propose a frequentist model averaging method for quantile regression with high‐dimensional covariates. Although research on these subjects has proliferated as separate approaches, no study has considered them in conjunction. Our method entails reducing the covariate dimensions through ranking the covariates based on marginal quantile utilities. The second step of our method implements model averaging on the models containing the covariates that survive the screening of the first step. We use a delete‐one cross‐validation method to select the model weights, and prove that the resultant estimator possesses an optimal asymptotic property uniformly over any compact (0,1) subset of the quantile indices. Our proof, which relies on empirical process theory, is arguably more challenging than proofs of similar results in other contexts owing to the high‐dimensional nature of the problem and our relaxation of the conventional assumption of the weights summing to one. Our investigation of finite‐sample performance demonstrates that the proposed method exhibits very favorable properties compared to the least absolute shrinkage and selection operator (LASSO) and smoothly clipped absolute deviation (SCAD) penalized regression methods. The method is applied to a microarray gene expression data set.

Suggested Citation

  • Miaomiao Wang & Xinyu Zhang & Alan T. K. Wan & Kang You & Guohua Zou, 2023. "Jackknife model averaging for high‐dimensional quantile regression," Biometrics, The International Biometric Society, vol. 79(1), pages 178-189, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:178-189
    DOI: 10.1111/biom.13574
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13574
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    2. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression Coefficients in High Dimensional Linear Models I. Scale Dependent Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 211-239, November.
    3. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Gerda Claeskens & Christophe Croux & Johan Van Kerckhoven, 2006. "Variable Selection for Logistic Regression Using a Prediction-Focused Information Criterion," Biometrics, The International Biometric Society, vol. 62(4), pages 972-979, December.
    6. Yang Y., 2001. "Adaptive Regression by Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 574-588, June.
    7. Hjort, Nils Lid & Claeskens, Gerda, 2006. "Focused Information Criteria and Model Averaging for the Cox Hazard Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1449-1464, December.
    8. Yang, Yuhong, 2000. "Combining Different Procedures for Adaptive Regression," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 135-161, July.
    9. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    10. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    11. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    12. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    13. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression-Coefficients in High Dimensional Linear Models II. Scale-Invariant Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 240-251, November.
    14. Kim, Yongdai & Choi, Hosik & Oh, Hee-Seok, 2008. "Smoothly Clipped Absolute Deviation on High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1665-1673.
    15. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    16. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    17. Rong Zhu & Alan T. K. Wan & Xinyu Zhang & Guohua Zou, 2019. "A Mallows-Type Model Averaging Estimator for the Varying-Coefficient Partially Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 882-892, April.
    18. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    19. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    20. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    2. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    4. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    5. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    6. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    7. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    8. Aman Ullah & Xinyu Zhang, 2015. "Grouped Model Averaging for Finite Sample Size," Working Papers 201501, University of California at Riverside, Department of Economics.
    9. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    10. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    11. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2013. "Uniform Asymptotic Risk of Averaging GMM Estimator Robust to Misspecification, Second Version," PIER Working Paper Archive 15-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    12. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    13. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
    14. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    15. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    16. Aman Ullah & Alan T. K. Wan & Huansha Wang & Xinyu Zhang & Guohua Zou, 2017. "A semiparametric generalized ridge estimator and link with model averaging," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 370-384, March.
    17. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    18. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    19. Jie Zeng & Weihu Cheng & Guozhi Hu, 2023. "Optimal Model Averaging Estimation for the Varying-Coefficient Partially Linear Models with Missing Responses," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    20. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:178-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.