IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i5p1116-1136.html
   My bibliography  Save this article

Non‐separable spatio‐temporal models via transformed multivariate Gaussian Markov random fields

Author

Listed:
  • Marcos O. Prates
  • Douglas R. M. Azevedo
  • Ying C. MacNab
  • Michael R. Willig

Abstract

Models that capture spatial and temporal dynamics are applicable in many scientific fields. Non‐separable spatio‐temporal models were introduced in the literature to capture these dynamics. However, these models are generally complicated in construction and interpretation. We introduce a class of non‐separable transformed multivariate Gaussian Markov random fields (TMGMRF) in which the dependence structure is flexible and facilitates simple interpretations concerning spatial, temporal and spatio‐temporal parameters. Moreover, TMGMRF models have the advantage of allowing specialists to define any desired marginal distribution in model construction without suffering from spatio‐temporal confounding. Consequently, the use of spatio‐temporal models under the TMGMRF framework leads to a new class of general models, such as spatio‐temporal Gamma random fields, that can be directly used to model Poisson intensity for space–time data. The proposed model was applied to identify important environmental characteristics that affect variation in the abundance of Nenia tridens, a dominant species of gastropod in a well‐studied tropical ecosystem, and to characterize its spatial and temporal trends, which are particularly critical during the Anthropocene, an epoch of time characterized by human‐induced environmental change associated with climate and land use.

Suggested Citation

  • Marcos O. Prates & Douglas R. M. Azevedo & Ying C. MacNab & Michael R. Willig, 2022. "Non‐separable spatio‐temporal models via transformed multivariate Gaussian Markov random fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1116-1136, November.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1116-1136
    DOI: 10.1111/rssc.12567
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12567
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    2. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    3. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    4. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    5. John Hughes & Murali Haran, 2013. "Dimension reduction and alleviation of confounding for spatial generalized linear mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 139-159, January.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    8. Ephraim M. Hanks & Erin M. Schliep & Mevin B. Hooten & Jennifer A. Hoeting, 2015. "Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 243-254, June.
    9. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    2. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    3. Carlos García & Zaida Quiroz & Marcos Prates, 2023. "Bayesian spatial quantile modeling applied to the incidence of extreme poverty in Lima–Peru," Computational Statistics, Springer, vol. 38(2), pages 603-621, June.
    4. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    5. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    6. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    7. Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.
    8. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    9. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    10. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    11. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.
    12. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    13. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    14. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    15. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    16. Trevor J. Hefley & Mevin B. Hooten & Ephraim M. Hanks & Robin E. Russell & Daniel P. Walsh, 2017. "The Bayesian Group Lasso for Confounded Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 42-59, March.
    17. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    18. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    19. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    20. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1116-1136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.