Estimation and hypothesis test for single-index multiplicative models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-018-0586-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Heng Lian & Hua Liang & Raymond J. Carroll, 2015. "Variance function partially linear single-index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 171-194, January.
- Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
- Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
- Chen, Kani & Guo, Shaojun & Lin, Yuanyuan & Ying, Zhiliang, 2010. "Least Absolute Relative Error Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1104-1112.
- Xu Guo & Tao Wang & Lixing Zhu, 2016. "Model checking for parametric single-index models: a dimension reduction model-adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1013-1035, November.
- Chen, Kani & Lin, Yuanyuan & Wang, Zhanfeng & Ying, Zhiliang, 2016. "Least product relative error estimation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 91-98.
- Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
- Zhao, Weihua & Lian, Heng & Zhang, Riquan & Lai, Peng, 2016. "Estimation and variable selection for proportional response data with partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 40-56.
- Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
- Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1112-1137, December.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Chuanhua Wei & Qihua Wang, 2012. "Statistical inference on restricted partially linear additive errors-in-variables models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 757-774, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Zhang & Bingqing Lin & Yiping Yang, 2022. "Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models," Statistical Papers, Springer, vol. 63(3), pages 885-918, June.
- Jun Zhang, 2021. "Model checking for multiplicative linear regression models with mixed estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 364-403, August.
- Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jun Zhang, 2021. "Estimation and variable selection for partial linear single-index distortion measurement errors models," Statistical Papers, Springer, vol. 62(2), pages 887-913, April.
- Jun Zhang & Xia Cui & Heng Peng, 2020. "Estimation and hypothesis test for partial linear single-index multiplicative models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 699-740, June.
- Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
- Jun Zhang & Junpeng Zhu & Yan Zhou & Xia Cui & Tao Lu, 2020. "Multiplicative regression models with distortion measurement errors," Statistical Papers, Springer, vol. 61(5), pages 2031-2057, October.
- Jun Zhang, 2021. "Model checking for multiplicative linear regression models with mixed estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 364-403, August.
- Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
- Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Huang, Zhensheng & Lin, Bingqing & Feng, Fan & Pang, Zhen, 2013. "Efficient penalized estimating method in the partially varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 189-200.
- Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
- Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
- Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
- Jia Chen & Jiti Gao & Degui Li, 2013.
"Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions,"
Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 928-955, November.
- Jia Chen & Jiti Gao & Degui Li, 2010. "Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions," School of Economics and Public Policy Working Papers 2010-09, University of Adelaide, School of Economics and Public Policy.
- Jia Chen & Jiti Gao & Degui Li, 2011. "Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions," Monash Econometrics and Business Statistics Working Papers 12/11, Monash University, Department of Econometrics and Business Statistics.
- Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Zhanfeng Wang & Zhuojian Chen & Zimu Chen, 2018. "H-relative error estimation for multiplicative regression model with random effect," Computational Statistics, Springer, vol. 33(2), pages 623-638, June.
- Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
- Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
- Brittany Green & Heng Lian & Yan Yu & Tianhai Zu, 2021. "Ultra high‐dimensional semiparametric longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 903-913, September.
- Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
- Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
More about this item
Keywords
Kernel smoothing; Local linear smoothing; Model checking; Single index; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:1:d:10.1007_s11749-018-0586-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.