IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v128y2018icp87-103.html
   My bibliography  Save this article

Estimation and hypothesis test for partial linear multiplicative models

Author

Listed:
  • Zhang, Jun
  • Feng, Zhenghui
  • Peng, Heng

Abstract

Estimation and hypothesis tests for partial linear multiplicative models are considered in this paper. A profile least product relative error estimation method is proposed to estimate unknown parameters. We employ the smoothly clipped absolute deviation penalty to do variable selection. A Wald-type test statistic is proposed to test a hypothesis on parametric components. The asymptotic properties of the estimators and test statistics are established. We also suggest a score-type test statistic for checking the validity of partial linear multiplicative models. The quadratic form of the scaled test statistic has an asymptotic chi-squared distribution under the null hypothesis and follows a non-central chi-squared distribution under local alternatives, converging to the null hypothesis at a parametric convergence rate. We conduct simulation studies to demonstrate the performance of the proposed procedure and a real data is analyzed to illustrate its practical usage.

Suggested Citation

  • Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
  • Handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:87-103
    DOI: 10.1016/j.csda.2018.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301634
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    2. Chen, Kani & Guo, Shaojun & Lin, Yuanyuan & Ying, Zhiliang, 2010. "Least Absolute Relative Error Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1104-1112.
    3. Chen, Kani & Lin, Yuanyuan & Wang, Zhanfeng & Ying, Zhiliang, 2016. "Least product relative error estimation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 91-98.
    4. Qi-Hua Wang & Bing-Yi Jing, 2003. "Empirical likelihood for partial linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 585-595, September.
    5. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    6. Patric Müller & Sara Geer, 2015. "The Partial Linear Model in High Dimensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 580-608, June.
    7. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    8. Degui Li & Jia Chen & Zhengyan Lin, 2009. "Variable selection in partially time-varying coefficient models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 553-566.
    9. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    10. Chuanhua Wei & Qihua Wang, 2012. "Statistical inference on restricted partially linear additive errors-in-variables models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 757-774, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Bingqing Lin & Yiping Yang, 2022. "Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models," Statistical Papers, Springer, vol. 63(3), pages 885-918, June.
    2. Jun Zhang, 2021. "Model checking for multiplicative linear regression models with mixed estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 364-403, August.
    3. Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    4. Huilan Liu & Xiawei Zhang & Huaiqing Hu & Junjie Ma, 2024. "Analysis of the positive response data with the varying coefficient partially nonlinear multiplicative model," Statistical Papers, Springer, vol. 65(5), pages 3063-3092, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Zhang & Junpeng Zhu & Yan Zhou & Xia Cui & Tao Lu, 2020. "Multiplicative regression models with distortion measurement errors," Statistical Papers, Springer, vol. 61(5), pages 2031-2057, October.
    2. Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
    3. Jun Zhang & Junpeng Zhu & Zhenghui Feng, 2019. "Estimation and hypothesis test for single-index multiplicative models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 242-268, March.
    4. Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
    5. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    6. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    7. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.
    8. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    9. Zhang, Jun & Zhou, Yan & Lin, Bingqing & Yu, Yao, 2017. "Estimation and hypothesis test on partial linear models with additive distortion measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 114-128.
    10. Ruiqi Liu & Ben Boukai & Zuofeng Shang, 2019. "Statistical Inference on Partially Linear Panel Model under Unobserved Linearity," Papers 1911.08830, arXiv.org.
    11. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    12. Jianhong Shi & Fanrong Zhao, 2018. "Statistical inference for heteroscedastic semi-varying coefficient EV models under restricted condition," Statistical Papers, Springer, vol. 59(2), pages 487-511, June.
    13. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    14. Liu, Jialuo & Chu, Tingjin & Zhu, Jun & Wang, Haonan, 2021. "Semiparametric method and theory for continuously indexed spatio-temporal processes," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    15. Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.
    16. Lin, Lu & Zhu, Lixing & Gai, Yujie, 2016. "Inference for biased models: A quasi-instrumental variable approach," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 22-36.
    17. Zheng, Zemin & Li, Yang & Yu, Chongxiu & Li, Gaorong, 2018. "Balanced estimation for high-dimensional measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 78-91.
    18. Jun Zhang & Yao Yu & Li-Xing Zhu & Hua Liang, 2013. "Partial linear single index models with distortion measurement errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 237-267, April.
    19. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    20. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:87-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.