IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p703-d353320.html
   My bibliography  Save this article

On Properties of the Bimodal Skew-Normal Distribution and an Application

Author

Listed:
  • David Elal-Olivero

    (Departamento de Matemáticas, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile)

  • Juan F. Olivares-Pacheco

    (Departamento de Matemáticas, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile)

  • Osvaldo Venegas

    (Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile)

  • Heleno Bolfarine

    (Instituto de Matemática e Estatística (IME), Universidade de São Paulo, São Paulo 05508-090, Brazil)

  • Héctor W. Gómez

    (Departamento de Matemática, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

Abstract

The main object of this paper is to develop an alternative construction for the bimodal skew-normal distribution. The construction is based upon a study of the mixture of skew-normal distributions. We study some basic properties of this family, its stochastic representations and expressions for its moments. Parameters are estimated using the maximum likelihood estimation method. A simulation study is carried out to observe the performance of the maximum likelihood estimators. Finally, we compare the efficiency of the new distribution with other distributions in the literature using a real data set. The study shows that the proposed approach presents satisfactory results.

Suggested Citation

  • David Elal-Olivero & Juan F. Olivares-Pacheco & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2020. "On Properties of the Bimodal Skew-Normal Distribution and an Application," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:703-:d:353320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barry Arnold & Robert Beaver & Richard Groeneveld & William Meeker, 1993. "The nontruncated marginal of a truncated bivariate normal distribution," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 471-488, September.
    2. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    3. Arthur Pewsey, 2000. "Problems of inference for Azzalini's skewnormal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 859-870.
    4. Yanyuan Ma & Marc G. Genton, 2004. "Flexible Class of Skew‐Symmetric Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 459-468, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    2. Juan Duarte & Guillermo Martínez-Flórez & Diego Ignacio Gallardo & Osvaldo Venegas & Héctor W. Gómez, 2023. "A Bimodal Extension of the Epsilon-Skew-Normal Model," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    3. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    4. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    5. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    6. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    7. Arthur Pewsey & Héctor Gómez & Heleno Bolfarine, 2012. "Likelihood-based inference for power distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 775-789, December.
    8. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    9. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    10. Guillermo Martínez-Flórez & Diego I. Gallardo & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2021. "Flexible Power-Normal Models with Applications," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
    11. Daan de Waal & Tristan Harris & Alta de Waal & Jocelyn Mazarura, 2022. "Modelling Bimodal Data Using a Multivariate Triangular-Linked Distribution," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    12. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    13. Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
    14. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    15. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    16. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    17. Mehdi Amiri & Ahad Jamalizadeh & Mina Towhidi, 2015. "Inference and further probabilistic properties of the $$ SUN_{n,2}$$ S U N n , 2 -distribution," Statistical Papers, Springer, vol. 56(4), pages 1071-1098, November.
    18. S. Cabras & M. E. Castellanos, 2009. "Default Bayesian goodness-of-fit tests for the skew-normal model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(2), pages 223-232.
    19. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Kim, Hea-Jung, 2008. "A class of weighted multivariate normal distributions and its properties," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1758-1771, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:703-:d:353320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.