IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v24y2015i4p796-812.html
   My bibliography  Save this article

Sharp non-asymptotic performance bounds for $$\ell _1$$ ℓ 1 and Huber robust regression estimators

Author

Listed:
  • Salvador Flores

Abstract

A quantitative study of the robustness properties of the $$\ell _1$$ ℓ 1 and the Huber M-estimator on finite samples is presented. The focus is on the linear model involving a fixed design matrix and additive errors restricted to the dependent variables consisting of noise and sparse outliers. We derive sharp error bounds for the $$\ell _1$$ ℓ 1 estimator in terms of the leverage constants of a design matrix introduced here. A similar analysis is performed for Huber’s estimator using an equivalent problem formulation of independent interest. Our analysis considers outliers of arbitrary magnitude, and we recover breakdown point results as particular cases when outliers diverge. The practical implications of the theoretical analysis are discussed on two real datasets. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Salvador Flores, 2015. "Sharp non-asymptotic performance bounds for $$\ell _1$$ ℓ 1 and Huber robust regression estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 796-812, December.
  • Handle: RePEc:spr:testjl:v:24:y:2015:i:4:p:796-812
    DOI: 10.1007/s11749-015-0435-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-015-0435-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-015-0435-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    2. Giloni, Avi & Simonoff, Jeffrey S. & Sengupta, Bhaskar, 2006. "Robust weighted LAD regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3124-3140, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    2. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    3. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    4. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    5. Jurecková, Jana, 2000. "Test of tails based on extreme regression quantiles," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 53-61, August.
    6. Vasco Molini & Michiel Keyzer & Bart van den Boom & Wouter Zant & Nicholas Nsowah-Nuamah, 2010. "Safety Nets and Index-Based Insurance: Historical Assessment and Semiparametric Simulation for Northern Ghana," Economic Development and Cultural Change, University of Chicago Press, vol. 58(4), pages 671-712, July.
    7. Davies, P. Laurie & Fried, Roland & Gather, Ursula, 2002. "Robust signal extraction for on-line monitoring data," Technical Reports 2002,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Avi Giloni & Bhaskar Sengupta & Jeffrey S. Simonoff, 2006. "A mathematical programming approach for improving the robustness of least sum of absolute deviations regression," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 261-271, June.
    9. Jurecková, Jana & Koenker, Roger & Portnoy, Stephen, 2001. "Tail behavior of the least-squares estimator," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 377-384, December.
    10. Čížek, Pavel, 2012. "Semiparametric robust estimation of truncated and censored regression models," Journal of Econometrics, Elsevier, vol. 168(2), pages 347-366.
    11. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.
    12. Vinciotti Veronica & Yu Keming, 2009. "M-quantile Regression Analysis of Temporal Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, September.
    13. Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
    14. Christine Müller, 2011. "Data depth for simple orthogonal regression with application to crack orientation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 135-165, September.
    15. Jana Jurecková, 2003. "Statistical tests on tail index of a probability distribution," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 151-190.
    16. Zuo, Yijun, 2003. "Finite sample tail behavior of multivariate location estimators," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 91-105, April.
    17. Marilena Furno, 2010. "A robust test of specification based on order statistics," Computational Statistics, Springer, vol. 25(4), pages 707-723, December.
    18. Jurecková, Jana, 2010. "Finite-sample distribution of regression quantiles," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1940-1946, December.
    19. Blanc, Sebastian M. & Setzer, Thomas, 2015. "Analytical debiasing of corporate cash flow forecasts," European Journal of Operational Research, Elsevier, vol. 243(3), pages 1004-1015.
    20. Janus, Thorsten, 2024. "Does export underreporting contribute to the resource curse?," World Development, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:4:p:796-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.