IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v74y2011i2p135-165.html
   My bibliography  Save this article

Data depth for simple orthogonal regression with application to crack orientation

Author

Listed:
  • Christine Müller

Abstract

No abstract is available for this item.

Suggested Citation

  • Christine Müller, 2011. "Data depth for simple orthogonal regression with application to crack orientation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 135-165, September.
  • Handle: RePEc:spr:metrik:v:74:y:2011:i:2:p:135-165
    DOI: 10.1007/s00184-009-0294-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-009-0294-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-009-0294-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    2. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    3. Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.
    4. Wellmann, Robin & Harmand, Peter & Müller, Christine H., 2009. "Distribution-free tests for polynomial regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 622-635, April.
    5. Wellmann, R. & Katina, S. & Muller, Ch.H., 2007. "Calculation of simplicial depth estimators for polynomial regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5025-5040, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wellmann, Robin & Müller, Christine H., 2010. "Depth notions for orthogonal regression," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2358-2371, November.
    2. Wellmann, Robin & Müller, Christine H., 2010. "Tests for multiple regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 824-838, April.
    3. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    4. Wellmann, Robin & Harmand, Peter & Müller, Christine H., 2009. "Distribution-free tests for polynomial regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 622-635, April.
    5. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    6. Ursula Gather & Karen Schettlinger & Roland Fried, 2006. "Online signal extraction by robust linear regression," Computational Statistics, Springer, vol. 21(1), pages 33-51, March.
    7. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    8. Jurecková, Jana, 2000. "Test of tails based on extreme regression quantiles," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 53-61, August.
    9. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    10. Davies, P. Laurie & Fried, Roland & Gather, Ursula, 2002. "Robust signal extraction for on-line monitoring data," Technical Reports 2002,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Avi Giloni & Bhaskar Sengupta & Jeffrey S. Simonoff, 2006. "A mathematical programming approach for improving the robustness of least sum of absolute deviations regression," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 261-271, June.
    12. Jurecková, Jana & Koenker, Roger & Portnoy, Stephen, 2001. "Tail behavior of the least-squares estimator," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 377-384, December.
    13. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.
    15. Čížek, Pavel, 2012. "Semiparametric robust estimation of truncated and censored regression models," Journal of Econometrics, Elsevier, vol. 168(2), pages 347-366.
    16. Wellmann, R. & Katina, S. & Muller, Ch.H., 2007. "Calculation of simplicial depth estimators for polynomial regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5025-5040, June.
    17. Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.
    18. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2007. "Robust learning from bites for data mining," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 347-361, September.
    19. Yijun Zuo, 2020. "Depth Induced Regression Medians and Uniqueness," Stats, MDPI, vol. 3(2), pages 1-13, April.
    20. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:74:y:2011:i:2:p:135-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.