IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1940-1946.html
   My bibliography  Save this article

Finite-sample distribution of regression quantiles

Author

Listed:
  • Jurecková, Jana

Abstract

The finite-sample distributions of the regression quantile and of the extreme regression quantile are derived for a broad class of distributions of the model errors, even for the non-i.i.d case. The distributions are analogous to the corresponding distributions in the location model; this again confirms that the regression quantile is a straightforward extension of the sample quantile. As an application, the tail behavior of the regression quantile is studied.

Suggested Citation

  • Jurecková, Jana, 2010. "Finite-sample distribution of regression quantiles," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1940-1946, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1940-1946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00246-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    2. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    3. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    4. Marc Hallin & Jana Jureckova, 1999. "Optimal tests for autoregressive models based on autoregression rank scores," ULB Institutional Repository 2013/2089, ULB -- Universite Libre de Bruxelles.
    5. Jana Jurečková & Jan Picek & Pranab Sen, 2003. "Goodness-of-fit test with nuisance regression and scale," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(3), pages 235-258, December.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurečková, Jana & Picek, Jan, 2012. "Regression quantiles and their two-step modifications," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1111-1115.
    2. Jurecková, Jana & Sabolová, Radka, 2011. "Finite-sample density and its small sample asymptotic approximation," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1311-1318, August.
    3. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    2. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    3. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    4. Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2016. "Factorisable multi-task quantile regression," SFB 649 Discussion Papers 2016-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    6. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    7. Matthias Duschl & Antje Schimke & Thomas Brenner & Dennis Luxen, 2011. "Firm Growth and the Spatial Impact of Geolocated External Factors – Empirical Evidence for German Manufacturing Firms," Working Papers on Innovation and Space 2011-03, Philipps University Marburg, Department of Geography.
    8. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    9. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    10. Etilé, F, 2008. "Food Price Policies and the Distribution of Body Mass Index: Theory and Empirical Evidence from France," Health, Econometrics and Data Group (HEDG) Working Papers 08/10, HEDG, c/o Department of Economics, University of York.
    11. Duschl, Matthias & Schimke, Antje & Brenner, Thomas & Luxen, Dennis, 2011. "Firm growth and the spatial impact of geolocated external factors: Empirical evidence for German manufacturing firms," Working Paper Series in Economics 36, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    12. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
    13. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    14. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 238(1).
    15. Zernov, Serguei & Zinde-Walsh, Victoria & Galbraith, John W., 2009. "Asymptotics for estimation of quantile regressions with truncated infinite-dimensional processes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 497-508, March.
    16. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    17. Qi Zheng & Colin Gallagher & K.B. Kulasekera, 2013. "Adaptively weighted kernel regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 855-872, December.
    18. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    19. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    20. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1940-1946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.