IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/a6228ada-1ab5-47ee-9d23-4405a780d654.html
   My bibliography  Save this paper

Semiparametric Robust Estimation of Truncated and Censored Regression Models

Author

Listed:
  • Cizek, P.

    (Tilburg University, Center For Economic Research)

Abstract

Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated and censored regression, which is highly robust but relatively imprecise. To improve its performance, we also propose data-adaptive and one-step trimmed estimators. We derive the robust and asymptotic properties of all proposed estimators and show that the one-step estimators (e.g., one-step SCLS) are as robust as GTE and are asymptotically equivalent to the original estimator (e.g., SCLS). The finite-sample properties of existing and proposed estimators are studied by means of Monte Carlo simulations.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Cizek, P., 2008. "Semiparametric Robust Estimation of Truncated and Censored Regression Models," Discussion Paper 2008-34, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:a6228ada-1ab5-47ee-9d23-4405a780d654
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/975436/2008-34.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    4. Honore, Bo E, 1992. "Trimmed LAD and Least Squares Estimation of Truncated and Censored Regression Models with Fixed Effects," Econometrica, Econometric Society, vol. 60(3), pages 533-565, May.
    5. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    6. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    7. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    8. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    9. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    10. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    11. Gerfin, Michael, 1996. "Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
    12. Peter Hall & Brett Presnell, 1999. "Biased Bootstrap Methods for Reducing the Effects of Contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 661-680.
    13. Krishnakumar, J. & Ronchetti, E., 1997. "Robust estimators for simultaneous equations models," Journal of Econometrics, Elsevier, vol. 78(2), pages 295-314, June.
    14. Maria Caterina Bramati & Christophe Croux, 2007. "Robust estimators for the fixed effects panel data model," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 521-540, November.
    15. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    16. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    17. Marc G. Genton & André Lucas, 2003. "Comprehensive definitions of breakdown points for independent and dependent observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 81-94, February.
    18. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    19. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    20. Debruyne, M. & Hubert, M. & Portnoy, S. & Vanden Branden, K., 2008. "Censored depth quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1604-1614, January.
    21. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    22. Cízek, Pavel, 2011. "Semiparametrically weighted robust estimation of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 774-788, January.
    23. Lee, Myoung-jae, 1993. "Quadratic mode regression," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 1-19.
    24. Peracchi, Franco, 1990. "Bounded-influence estimators for the tobit model," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 107-126.
    25. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    26. Willems, Gert & Van Aelst, Stefan, 2005. "Fast and robust bootstrap for LTS," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 703-715, April.
    27. Wagenvoort, Rien & Waldmann, Robert, 2002. "On B-robust instrumental variable estimation of the linear model with panel data," Journal of Econometrics, Elsevier, vol. 106(2), pages 297-324, February.
    28. Luojia Hu, 2002. "Estimation of a Censored Dynamic Panel Data Model," Econometrica, Econometric Society, vol. 70(6), pages 2499-2517, November.
    29. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    30. Santos Silva, J M C, 2001. "Influence Diagnostics and Estimation Algorithms for Powell's SCLS," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 55-62, January.
    31. Krasker, William S & Welsch, Roy E, 1985. "Resistant Estimation for Simultaneous-Equations Models Using Weighted Instrumental Variables," Econometrica, Econometric Society, vol. 53(6), pages 1475-1488, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cizek, P., 2009. "Generalized Methods of Trimmed Moments," Discussion Paper 2009-25, Tilburg University, Center for Economic Research.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. P. Čížek & S. Sadikoglu, 2018. "Bias-corrected quantile regression estimation of censored regression models," Statistical Papers, Springer, vol. 59(1), pages 215-247, March.
    4. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    5. Cizek, P., 2007. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaces DP 2007-1)," Other publications TiSEM eeccf622-dd18-41d4-a2f9-b, Tilburg University, School of Economics and Management.
    6. Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. repec:hum:wpaper:sfb649dp2006-050 is not listed on IDEAS
    8. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    9. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    10. Aquaro, M. & Čížek, P., 2013. "One-step robust estimation of fixed-effects panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 536-548.
    11. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    12. Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
    13. Cízek, Pavel, 2011. "Semiparametrically weighted robust estimation of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 774-788, January.
    14. Alejandro Cid & Daniel Ferres & Máximo Rossi, 2008. "Subjective Well-Being in the Southern Cone: Health, Income and Family," Documentos de Trabajo (working papers) 1308, Department of Economics - dECON.
    15. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    16. Khan, Shakeeb & Lewbel, Arthur, 2007. "Weighted And Two-Stage Least Squares Estimation Of Semiparametric Truncated Regression Models," Econometric Theory, Cambridge University Press, vol. 23(2), pages 309-347, April.
    17. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    18. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    19. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
    20. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    21. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Dispersion estimation; Earnings risk; Censoring; Quantile regression; Occupational choice; Sorting; Risk preferences; SOEP; IABS," ECONtribute Discussion Papers Series 028, University of Bonn and University of Cologne, Germany.

    More about this item

    Keywords

    Asymptotic normality; censored regression; one-step estimation; robust esti- mation; trimming; truncated regression;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:a6228ada-1ab5-47ee-9d23-4405a780d654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.