IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v85y2003i1p91-105.html
   My bibliography  Save this article

Finite sample tail behavior of multivariate location estimators

Author

Listed:
  • Zuo, Yijun

Abstract

A finite sample performance measure of multivariate location estimators is introduced based on "tail behavior". The tail performance of multivariate "monotone" location estimators and the halfspace depth based "non-monotone" location estimators including the Tukey halfspace median and multivariate L-estimators is investigated. The connections among the finite sample performance measure, the finite sample breakdown point, and the halfspace depth are revealed. It turns out that estimators with high breakdown point or halfspace depth have "appealing" tail performance. The tail performance of the halfspace median is very appealing and also robust against underlying population distributions, while the tail performance of the sample mean is very sensitive to underlying population distributions. These findings provide new insights into the notions of the halfspace depth and breakdown point and identify the important role of tail behavior as a quantitative measure of robustness in the multivariate location setting.

Suggested Citation

  • Zuo, Yijun, 2003. "Finite sample tail behavior of multivariate location estimators," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 91-105, April.
  • Handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:91-105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00059-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Yijun & Serfling, Robert, 2000. "Nonparametric Notions of Multivariate "Scatter Measure" and "More Scattered" Based on Statistical Depth Functions," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 62-78, October.
    2. Jozef Kušnier & Ivan Mizera, 2001. "Tail Behavior and Breakdown Properties of Equivariant Estimators of Location," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 244-261, June.
    3. Jurecková, Jana, 2000. "Test of tails based on extreme regression quantiles," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 53-61, August.
    4. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    3. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    4. Jurecková, Jana, 2010. "Finite-sample distribution of regression quantiles," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1940-1946, December.
    5. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    6. Jurecková, Jana, 2000. "Test of tails based on extreme regression quantiles," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 53-61, August.
    7. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    8. Janus, Thorsten, 2024. "Does export underreporting contribute to the resource curse?," World Development, Elsevier, vol. 181(C).
    9. Davies, P. Laurie & Fried, Roland & Gather, Ursula, 2002. "Robust signal extraction for on-line monitoring data," Technical Reports 2002,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Avi Giloni & Bhaskar Sengupta & Jeffrey S. Simonoff, 2006. "A mathematical programming approach for improving the robustness of least sum of absolute deviations regression," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 261-271, June.
    11. Jurecková, Jana & Koenker, Roger & Portnoy, Stephen, 2001. "Tail behavior of the least-squares estimator," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 377-384, December.
    12. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    13. Salvador Flores, 2015. "Sharp non-asymptotic performance bounds for $$\ell _1$$ ℓ 1 and Huber robust regression estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 796-812, December.
    14. Čížek, Pavel, 2012. "Semiparametric robust estimation of truncated and censored regression models," Journal of Econometrics, Elsevier, vol. 168(2), pages 347-366.
    15. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    16. Mikosch, Thomas & de Vries, Casper G., 2013. "Heavy tails of OLS," Journal of Econometrics, Elsevier, vol. 172(2), pages 205-221.
    17. Jozef Kušnier & Ivan Mizera, 2001. "Tail Behavior and Breakdown Properties of Equivariant Estimators of Location," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 244-261, June.
    18. Romanazzi, Mario, 2009. "Data depth, random simplices and multivariate dispersion," Statistics & Probability Letters, Elsevier, vol. 79(12), pages 1473-1479, June.
    19. Cizek, P., 2009. "Generalized Methods of Trimmed Moments," Discussion Paper 2009-25, Tilburg University, Center for Economic Research.
    20. Gather, Ursula & Einbeck, Jochen & Fried, Roland, 2005. "Weighted Repeated Median Smoothing and Filtering," Technical Reports 2005,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:91-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.