IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i2p276-278.html
   My bibliography  Save this article

Comments on: Extensions of some classical methods in change point analysis

Author

Listed:
  • Piotr Kokoszka

Abstract

No abstract is available for this item.

Suggested Citation

  • Piotr Kokoszka, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 276-278, June.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:276-278
    DOI: 10.1007/s11749-014-0371-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0371-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0371-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    3. Laha, A. K. & Rathi, Poonam, 2017. "Are the temperature of Indian cities Increasing?: Some Insights Using Change Point Analysis with Functional Data," IIMA Working Papers WP 2017-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Burdejova, P. & Härdle, W. & Kokoszka, P. & Xiong, Q., 2017. "Change point and trend analyses of annual expectile curves of tropical storms," Econometrics and Statistics, Elsevier, vol. 1(C), pages 101-117.
    5. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    6. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    7. Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
    8. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    9. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    10. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    11. John Aston, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 256-257, June.
    12. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    13. Changryong Baek & Piotr Kokoszka & Xiangdong Meng, 2024. "Test of change point versus long‐range dependence in functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 497-512, July.
    14. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    15. Natalie Neumeyer & Leonie Selk, 2025. "Testing for changes in the error distribution in functional linear models," Statistical Papers, Springer, vol. 66(2), pages 1-17, February.
    16. Kokoszka, Piotr & Kutta, Tim & Mohammadi, Neda & Wang, Haonan & Wang, Shixuan, 2024. "Detection of a structural break in intraday volatility pattern," Stochastic Processes and their Applications, Elsevier, vol. 176(C).
    17. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    18. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    19. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    20. Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:276-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.