Testing for changes in the error distribution in functional linear models
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-024-01656-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Natalie Neumeyer & Ingrid Van Keilegom, 2009. "Change‐Point Tests for the Error Distribution in Non‐parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 518-541, September.
- István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
- Bai, J., 1994. "Stochastic Equicontinuity and Weak Convergence of Unbounded Sequential Empirical Proceses," Working papers 94-07, Massachusetts Institute of Technology (MIT), Department of Economics.
- Lajos Horváth & Piotr Kokoszka & Shanglin Lu, 2024. "Variable Selection Based Testing for Parameter Changes in Regression with Autoregressive Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1331-1343, October.
- Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
- Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
- Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
- Leonie Selk & Natalie Neumeyer, 2013. "Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 770-788, December.
- Aue, Alexander & Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2009. "Estimation of a change-point in the mean function of functional data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2254-2269, November.
- Alexander Aue & Gregory Rice & Ozan Sönmez, 2018. "Detecting and dating structural breaks in functional data without dimension reduction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 509-529, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
- Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
- Tadas Danielius & Alfredas Račkauskas, 2022. "Multiple Change-Point Detection in a Functional Sample via the 𝒢-Sum Process," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
- J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
- B. Cooper Boniece & Lajos Horv'ath & Lorenzo Trapani, 2023. "On changepoint detection in functional data using empirical energy distance," Papers 2310.04853, arXiv.org.
- Kokoszka, Piotr & Kutta, Tim & Mohammadi, Neda & Wang, Haonan & Wang, Shixuan, 2024. "Detection of a structural break in intraday volatility pattern," Stochastic Processes and their Applications, Elsevier, vol. 176(C).
- Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
- Rice, Gregory & Zhang, Chi, 2022. "Consistency of binary segmentation for multiple change-point estimation with functional data," Statistics & Probability Letters, Elsevier, vol. 180(C).
- Mengchen Wang & Trevor Harris & Bo Li, 2023. "Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 157-176, March.
- Jialiang Li & Yaguang Li & Tailen Hsing, 2022. "On functional processes with multiple discontinuities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 933-972, July.
- Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
- Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
- Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
- Xu, Haotian & Wang, Daren & Zhao, Zifeng & Yu, Yi, 2022. "Change point inference in high-dimensional regression models under temporal dependence," LIDAM Discussion Papers ISBA 2022027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
- Lea Wegner & Martin Wendler, 2024. "Robust change-point detection for functional time series based on U-statistics and dependent wild bootstrap," Statistical Papers, Springer, vol. 65(7), pages 4767-4810, September.
- Markevičiūtė, J., 2016. "Epidemic change tests for the mean of innovations of an AR(1) process," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 79-91.
- Changryong Baek & Piotr Kokoszka & Xiangdong Meng, 2024. "Test of change point versus long‐range dependence in functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 497-512, July.
- Leonie Selk & Natalie Neumeyer, 2013. "Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 770-788, December.
More about this item
Keywords
Change-points; Functional data analysis; Regularized function estimators; Regression; Residual processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:2:d:10.1007_s00362-024-01656-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.