IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v176y2024ics0304414924001327.html
   My bibliography  Save this article

Detection of a structural break in intraday volatility pattern

Author

Listed:
  • Kokoszka, Piotr
  • Kutta, Tim
  • Mohammadi, Neda
  • Wang, Haonan
  • Wang, Shixuan

Abstract

We develop theory leading to testing procedures for the presence of a change point in the intraday volatility pattern. The new theory is developed in the framework of Functional Data Analysis. It is based on a model akin to the stochastic volatility model for scalar point-to-point returns. In our context, we study intraday curves, one curve per trading day. After postulating a suitable model for such functional data, we present three tests focusing, respectively, on changes in the shape, the magnitude and arbitrary changes in the sequences of the curves of interest. We justify the respective procedures by showing that they have asymptotically correct size and by deriving consistency rates for all tests. These rates involve the sample size (the number of trading days) and the grid size (the number of observations per day). We also derive the corresponding change point estimators and their consistency rates. All procedures are additionally validated by a simulation study and an application to US stocks.

Suggested Citation

  • Kokoszka, Piotr & Kutta, Tim & Mohammadi, Neda & Wang, Haonan & Wang, Shixuan, 2024. "Detection of a structural break in intraday volatility pattern," Stochastic Processes and their Applications, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:spapps:v:176:y:2024:i:c:s0304414924001327
    DOI: 10.1016/j.spa.2024.104426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924001327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
    3. Alfredas Račkauskas & Charles Suquet, 2006. "Testing Epidemic Changes of Infinite Dimensional Parameters," Statistical Inference for Stochastic Processes, Springer, vol. 9(2), pages 111-134, July.
    4. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    5. Gregory Rice & Marco Shum, 2019. "Inference for the Lagged Cross‐Covariance Operator Between Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(5), pages 665-692, September.
    6. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    8. Aue, Alexander & Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2009. "Estimation of a change-point in the mean function of functional data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2254-2269, November.
    9. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    10. Holger Dette & Kevin Kokot, 2022. "Detecting relevant differences in the covariance operators of functional time series: a sup-norm approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 195-231, April.
    11. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    12. Alexander Aue & Gregory Rice & Ozan Sönmez, 2018. "Detecting and dating structural breaks in functional data without dimension reduction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 509-529, June.
    13. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    14. Xiaofeng Shao, 2015. "Self-Normalization for Time Series: A Review of Recent Developments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1797-1817, December.
    15. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    16. Christensen, Kim & Hounyo, Ulrich & Podolskij, Mark, 2018. "Is the diurnal pattern sufficient to explain intraday variation in volatility? A nonparametric assessment," Journal of Econometrics, Elsevier, vol. 205(2), pages 336-362.
    17. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    18. Hoffmann, Michael & Vetter, Mathias & Dette, Holger, 2018. "Nonparametric inference of gradual changes in the jump behaviour of time-continuous processes," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3679-3723.
    19. Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
    20. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    21. A. Aue & G. Rice & O. Sönmez, 2020. "Structural break analysis for spectrum and trace of covariance operators," Environmetrics, John Wiley & Sons, Ltd., vol. 31(1), February.
    22. Bibinger, Markus & Madensoy, Mehmet, 2019. "Change-point inference on volatility in noisy Itô semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 4878-4925.
    23. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    3. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    4. Changryong Baek & Piotr Kokoszka & Xiangdong Meng, 2024. "Test of change point versus long‐range dependence in functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 497-512, July.
    5. Mengchen Wang & Trevor Harris & Bo Li, 2023. "Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 157-176, March.
    6. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    7. Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
    8. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    9. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    10. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    11. Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org, revised Jun 2024.
    12. Jialiang Li & Yaguang Li & Tailen Hsing, 2022. "On functional processes with multiple discontinuities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 933-972, July.
    13. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    14. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.
    15. Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
    16. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    17. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    18. Xu, Haotian & Wang, Daren & Zhao, Zifeng & Yu, Yi, 2022. "Change point inference in high-dimensional regression models under temporal dependence," LIDAM Discussion Papers ISBA 2022027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Lea Wegner & Martin Wendler, 2024. "Robust change-point detection for functional time series based on U-statistics and dependent wild bootstrap," Statistical Papers, Springer, vol. 65(7), pages 4767-4810, September.
    20. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:176:y:2024:i:c:s0304414924001327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.