IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v20y2011i1p72-94.html
   My bibliography  Save this article

A general result on the uniform in bandwidth consistency of kernel-type function estimators

Author

Listed:
  • David Mason
  • Jan Swanepoel

Abstract

We develop a general theorem to prove the uniform in bandwidth consistency of kernel-type function estimators. This method unifies the approaches in some other recent papers. We show how to apply our results to kernel distribution function estimators and the smoothed empirical process. The results are applicable to establish strong uniform consistency of data-driven bandwidth kernel-type function estimators. Copyright Sociedad de Estadística e Investigación Operativa 2011

Suggested Citation

  • David Mason & Jan Swanepoel, 2011. "A general result on the uniform in bandwidth consistency of kernel-type function estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 72-94, May.
  • Handle: RePEc:spr:testjl:v:20:y:2011:i:1:p:72-94
    DOI: 10.1007/s11749-010-0188-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-010-0188-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-010-0188-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Boos, 1986. "Rates of convergence for the distance between distribution function estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 33(1), pages 197-202, December.
    2. Jan W. H. Swanepoel & Francois C. Van Graan, 2005. "A New Kernel Distribution Function Estimator Based on a Non‐parametric Transformation of the Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 551-562, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Mason, 2012. "Proving consistency of non-standard kernel estimators," Statistical Inference for Stochastic Processes, Springer, vol. 15(2), pages 151-176, July.
    2. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    3. Paul Deheuvels & Sarah Ouadah, 2013. "Uniform-in-Bandwidth Functional Limit Laws," Journal of Theoretical Probability, Springer, vol. 26(3), pages 697-721, September.
    4. Bouzebda, Salim & Elhattab, Issam & Seck, Cheikh Tidiane, 2018. "Uniform in bandwidth consistency of nonparametric regression based on copula representation," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 173-182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
    2. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    3. Ramon Alemany & Catalina Bolancé & Montserrat Guillén, 2012. "Nonparametric estimation of Value-at-Risk," Working Papers XREAP2012-19, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2012.
    4. Chacón, José E. & Monfort, Pablo & Tenreiro, Carlos, 2014. "Fourier methods for smooth distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 223-230.
    5. Suparna Biswas & Rituparna Sen, 2019. "Kernel Based Estimation of Spectral Risk Measures," Papers 1903.03304, arXiv.org, revised Dec 2023.
    6. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.
    7. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    8. Arup Bose & Santanu Dutta, 2022. "Kernel based estimation of the distribution function for length biased data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 269-287, April.
    9. D. Blanke & D. Bosq, 2018. "Polygonal smoothing of the empirical distribution function," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 263-287, July.
    10. Catalina Bolancé & Montserrat Guillen, 2021. "Nonparametric Estimation of Extreme Quantiles with an Application to Longevity Risk," Risks, MDPI, vol. 9(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:20:y:2011:i:1:p:72-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.