IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v67y2018i3d10.1007_s11235-017-0355-7.html
   My bibliography  Save this article

Influence of overhead on LTE downlink performance: a comprehensive model

Author

Listed:
  • Amir M. Ahmadzadeh

    (University of Alcalá)

  • Lucas Cuadra

    (University of Alcalá)

  • Miguel A. Arco-Vega

    (University of Alcalá)

  • J. Antonio Portilla-Figueras

    (University of Alcalá)

  • Sancho Salcedo-Sanz

    (University of Alcalá)

Abstract

Overhead resource elements (REs) in Long Term Evolution (LTE) networks are used for some control, signaling and synchronization tasks at both the Physical level and Media Access Control sub-level. Accurately computing all the overhead REs is necessary to achieve an efficient system design, which is difficult because LTE is a complex standard that contains a large number of implementation flexibilities and system configurations. The number of such REs depends on both the system configurations and services demanded. Aiming at exploring the influence of overhead on LTE downlink performance, we first parametrize each system configuration—including parameters corresponding to enhancement techniques such as Adaptive Modulation and Coding and Multi-Antenna Transmissions techniques—and those of the resource allocation mechanisms (which depend on users’ services). Second, using such parametrization, we model all overheads for synchronization, controlling and signaling operations in LTE Physical Downlink Shared/Control Channels. This allows for dynamically computing the useful REs (by subtracting the overhead REs from the total ones), both per Transmission Time Interval (TTI) and per frame (and hence, the corresponding bit rates). Our data rate-based performance model is able to accurately compute: (1) the real, exact system data rate or “throughput” (instead of approximations); and (2) the maximum number of simultaneous multi-service users per TTI that is able to support (called here “capacity”). Aiming at understanding the impact of each overhead mechanism, we have carried out a variety of simulations, including different service provision scenarios, such as multi-user with multi-application. The simulation results prove our starting hypothesis that the influence of overhead on LTE performance should not be neglected. The parametrized and dynamic model quantifies to what extent throughput and capacity are modified by overhead—under a combination of system configurations and services, and may provide these performance metrics, throughput and capacity, as inputs to planning, dimensioning and optimization specialized tools.

Suggested Citation

  • Amir M. Ahmadzadeh & Lucas Cuadra & Miguel A. Arco-Vega & J. Antonio Portilla-Figueras & Sancho Salcedo-Sanz, 2018. "Influence of overhead on LTE downlink performance: a comprehensive model," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(3), pages 485-517, March.
  • Handle: RePEc:spr:telsys:v:67:y:2018:i:3:d:10.1007_s11235-017-0355-7
    DOI: 10.1007/s11235-017-0355-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-017-0355-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-017-0355-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desta Haileselassie Hagos, 2016. "The performance of network-controlled mobile data offloading from LTE to WiFi networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 61(4), pages 675-694, April.
    2. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Bogdanov & Veljko Jeremiæ & Sandra Jednak & Mladen Èudanov, 2019. "Scrutinizing the Smart City Index: a multivariate statistical approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(2), pages 777-799.
    2. Roblek Vasja & Meško Maja & Podbregar Iztok, 2021. "Mapping of the Emergence of Society 5.0: A Bibliometric Analysis," Organizacija, Sciendo, vol. 54(4), pages 293-305, December.
    3. Yan, Jianghui & Liu, Jinping & Tseng, Fang-Mei, 2020. "An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Jovani Taveira de Souza & Antonio Carlos de Francisco & Cassiano Moro Piekarski & Guilherme Francisco do Prado, 2019. "Data Mining and Machine Learning to Promote Smart Cities: A Systematic Review from 2000 to 2018," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
    5. Carmen Cantuarias-Villessuzanne & Romain Weigel & Jeffrey Blain, 2021. "Clustering of European Smart Cities to Understand the Cities’ Sustainability Strategies," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    6. Becker, Jörg & Distel, Bettina & Grundmann, Matthias & Hupperich, Thomas & Kersting, Norbert & Löschel, Andreas & Parreira do Amaral, Marcelo & Scholta, Hendrik, 2021. "Challenges and potentials of digitalisation for small and mid-sized towns: Proposition of a transdisciplinary research agenda," ERCIS Working Papers 36, University of Münster, European Research Center for Information Systems (ERCIS).
    7. Mariusz J. Ligarski & Tomasz Owczarek, 2024. "Preparing Quality of Life Surveys Versus Using Information for Sustainable Development: The Example of Polish Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 173(3), pages 765-782, July.
    8. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    9. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.
    10. Dana Indra Sensuse & Shidiq Al Hakim, 2019. "Building Smart Knowledge Mapping Conceptual Model," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-17, June.
    11. Anthony Simonofski & Estefanía Serral Asensio & Johannes Smedt & Monique Snoeck, 2019. "Hearing the Voice of Citizens in Smart City Design: The CitiVoice Framework," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 665-678, December.
    12. Ezra Ho, 2017. "Smart subjects for a Smart Nation? Governing (smart)mentalities in Singapore," Urban Studies, Urban Studies Journal Limited, vol. 54(13), pages 3101-3118, October.
    13. Michael Yit Lin Chew & Evelyn Ai Lin Teo & Kwok Wei Shah & Vishal Kumar & Ghassan Fahem Hussein, 2020. "Evaluating the Roadmap of 5G Technology Implementation for Smart Building and Facilities Management in Singapore," Sustainability, MDPI, vol. 12(24), pages 1-26, December.
    14. Martin David & Florian Koch, 2019. "“Smart Is Not Smart Enough!” Anticipating Critical Raw Material Use in Smart City Concepts: The Example of Smart Grids," Sustainability, MDPI, vol. 11(16), pages 1-11, August.
    15. Milo Costanza-van den Belt & Tayanah O’Donnell & Robert Webb & Eleanor Robson & Robert Costanza & Jiaqian Ling & Sarah Crowe & Hao Han, 2021. "Community Preferences for Urban Systems Transformation in Australia," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    16. Mauro ROMANELLI, 2021. "Rediscovering urban intelligence within cities by technologies," Smart Cities and Regional Development (SCRD) Journal, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 5(3), pages 115-122, July.
    17. Boeing, Geoff, 2021. "Spatial information and the legibility of urban form: Big data in urban morphology," International Journal of Information Management, Elsevier, vol. 56(C).
    18. Benedikt Schmid, 2022. "What about the City? Towards an Urban Post-Growth Research Agenda," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    19. Aldona Podgórniak-Krzykacz & Justyna Przywojska & Justyna Wiktorowicz, 2020. "Smart and Age-Friendly Communities in Poland. An Analysis of Institutional and Individual Conditions for a New Concept of Smart Development of Ageing Communities," Energies, MDPI, vol. 13(9), pages 1-23, May.
    20. Lingyan Xu & Dandan Wang & Jianguo Du, 2021. "The Heterogeneous Influence of Infrastructure Construction on China’s Urban Green and Smart Development—The Threshold Effect of Urban Scale," Land, MDPI, vol. 10(10), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:67:y:2018:i:3:d:10.1007_s11235-017-0355-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.