IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i7d10.1007_s00362-024-01547-z.html
   My bibliography  Save this article

Flexible-dimensional L-statistic for mean estimation of symmetric distributions

Author

Listed:
  • Juan Baz

    (University of Oviedo)

  • Diego García-Zamora

    (University of Jaén)

  • Irene Díaz

    (University of Oviedo)

  • Susana Montes

    (University of Oviedo)

  • Luis Martínez

    (University of Jaén)

Abstract

Estimating the mean of a population is a recurrent topic in statistics because of its multiple applications. If previous data is available, or the distribution of the deviation between the measurements and the mean is known, it is possible to perform such estimation by using L-statistics, whose optimal linear coefficients, typically referred to as weights, are derived from a minimization of the mean squared error. However, such optimal weights can only manage sample sizes equal to the one used to derive them, while in real-world scenarios this size might slightly change. Therefore, this paper proposes a method to overcome such a limitation and derive approximations of flexible-dimensional optimal weights. To do so, a parametric family of functions based on extreme value reductions and amplifications is proposed to be adjusted to the cumulative optimal weights of a given sample from a symmetric distribution. Then, the application of Yager’s method to derive weights for ordered weighted average (OWA) operators allows computing the approximate optimal weights for sample sizes close to the original one. This method is justified from the theoretical point of view by proving a convergence result regarding the cumulative weights obtained for different sample sizes. Finally, the practical performance of the theoretical results is shown for several classical symmetric distributions.

Suggested Citation

  • Juan Baz & Diego García-Zamora & Irene Díaz & Susana Montes & Luis Martínez, 2024. "Flexible-dimensional L-statistic for mean estimation of symmetric distributions," Statistical Papers, Springer, vol. 65(7), pages 4001-4024, September.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01547-z
    DOI: 10.1007/s00362-024-01547-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01547-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01547-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alex Dytso & Ronit Bustin & H. Vincent Poor & Shlomo Shamai, 2018. "Analytical properties of generalized Gaussian distributions," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-40, December.
    2. Peng Ding, 2014. "Three Occurrences of the Hyperbolic-Secant Distribution," The American Statistician, Taylor & Francis Journals, vol. 68(1), pages 32-35, February.
    3. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    4. Hisham M. Almongy & Ehab M. Almetwally & Randa Alharbi & Dalia Alnagar & E. H. Hafez & Marwa M. Mohie El-Din & Ahmed Mostafa Khalil, 2021. "The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data," Complexity, Hindawi, vol. 2021, pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.
    2. Van Tran, Quang & Kukal, Jaromir, 2024. "Renyi entropy based design of heavy tailed distribution for return of financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Naif Alotaibi & Ibrahim Elbatal & Ehab M. Almetwally & Salem A. Alyami & A. S. Al-Moisheer & Mohammed Elgarhy, 2022. "Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data," Mathematics, MDPI, vol. 10(9), pages 1-25, May.
    4. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    5. Elisângela C. Biazatti & Gauss M. Cordeiro & Gabriela M. Rodrigues & Edwin M. M. Ortega & Luís H. de Santana, 2022. "A Weibull-Beta Prime Distribution to Model COVID-19 Data with the Presence of Covariates and Censored Data," Stats, MDPI, vol. 5(4), pages 1-15, November.
    6. Emilio Gómez-Déniz & Barry C. Arnold & José M. Sarabia & Héctor W. Gómez, 2021. "Properties and Applications of a New Family of Skew Distributions," Mathematics, MDPI, vol. 9(1), pages 1-18, January.
    7. Victor Korolev, 2020. "Some Properties of Univariate and Multivariate Exponential Power Distributions and Related Topics," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    8. Pan, Yan & Duan, Fabing & Xu, Liyan & Chapeau-Blondeau, François, 2019. "Benefits of noise in M-estimators: Optimal noise level and probability density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    9. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    10. Piero Quatto & Gianmarco Vacca & Maria Grazia Zoia, 2021. "Modeling Portfolios with Leptokurtic and Dependent Risk Factors," Papers 2106.04218, arXiv.org.
    11. Prakash, Shivendra & Markfort, Corey D., 2022. "A Monte-Carlo based 3-D ballistics model for guiding bat carcass surveys using environmental and turbine operational data," Ecological Modelling, Elsevier, vol. 470(C).
    12. Chen, Songnian, 2023. "Two-step estimation of censored quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 1310-1336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01547-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.