IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v5y2018i1d10.1186_s40488-018-0088-5.html
   My bibliography  Save this article

Analytical properties of generalized Gaussian distributions

Author

Listed:
  • Alex Dytso

    (Department of Electrical Engineering, Princeton University)

  • Ronit Bustin

    (Department of Electrical Engineering, Technion-Israel Institute of Technology)

  • H. Vincent Poor

    (Department of Electrical Engineering, Princeton University)

  • Shlomo Shamai

    (Department of Electrical Engineering, Technion-Israel Institute of Technology)

Abstract

The family of Generalized Gaussian (GG) distributions has received considerable attention from the engineering community, due to the flexible parametric form of its probability density function, in modeling many physical phenomena. However, very little is known about the analytical properties of this family of distributions, and the aim of this work is to fill this gap. Roughly, this work consists of four parts. The first part of the paper analyzes properties of moments, absolute moments, the Mellin transform, and the cumulative distribution function. For example, it is shown that the family of GG distributions has a natural order with respect to second-order stochastic dominance. The second part of the paper studies product decompositions of GG random variables. In particular, it is shown that a GG random variable can be decomposed into a product of a GG random variable (of a different order) and an independent positive random variable. The properties of this decomposition are carefully examined. The third part of the paper examines properties of the characteristic function of the GG distribution. For example, the distribution of the zeros of the characteristic function is analyzed. Moreover, asymptotically tight bounds on the characteristic function are derived that give an exact tail behavior of the characteristic function. Finally, a complete characterization of conditions under which GG random variables are infinitely divisible and self-decomposable is given. The fourth part of the paper concludes this work by summarizing a number of important open questions.

Suggested Citation

  • Alex Dytso & Ronit Bustin & H. Vincent Poor & Shlomo Shamai, 2018. "Analytical properties of generalized Gaussian distributions," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-40, December.
  • Handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0088-5
    DOI: 10.1186/s40488-018-0088-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-018-0088-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-018-0088-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolf-Dieter Richter, 2016. "Exact inference on scaling parameters in norm and antinorm contoured sample distributions," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    2. Goodman, Irwin R. & Kotz, Samuel, 1973. "Multivariate [theta]-generalized normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 3(2), pages 204-219, June.
    3. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    4. Saralees Nadarajah, 2005. "A generalized normal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 685-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prakash, Shivendra & Markfort, Corey D., 2022. "A Monte-Carlo based 3-D ballistics model for guiding bat carcass surveys using environmental and turbine operational data," Ecological Modelling, Elsevier, vol. 470(C).
    2. Victor Korolev, 2020. "Some Properties of Univariate and Multivariate Exponential Power Distributions and Related Topics," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    3. Van Tran, Quang & Kukal, Jaromir, 2024. "Renyi entropy based design of heavy tailed distribution for return of financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwame Addae‐Dapaah & Wilfred Tan Yong Hwee, 2009. "The unsung impact of currency risk on the performance of international real property investment," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 56-65, January.
    2. Colson, Gérard, 1993. "Prenons-nous assez de risque dans les théories du risque?," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(1), pages 111-141, mars.
    3. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    4. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    5. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    6. G. Dionne & F. Gagnon & K. Dachraoui, 1997. "Increases in risk and optimal portfolio," THEMA Working Papers 97-29, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    8. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    9. Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.
    10. Michael J. Seiler & David M. Harrison & Pim Van Vliet & Kit Ching Yeung, 2005. "Return Characteristics of State‐Owned and Non‐State‐Owned Chinese A Shares," The Financial Review, Eastern Finance Association, vol. 40(4), pages 533-548, November.
    11. Brogan, Anita J. & Stidham Jr., Shaler, 2008. "Non-separation in the mean-lower-partial-moment portfolio optimization problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 701-710, January.
    12. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    13. Baochun Peng & Haidong Yuan, 2021. "Dynamic Fairness: Mobility, Inequality, and the Distribution of Prospects," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(4), pages 1314-1338, October.
    14. Tsang, Chun-Kei & Wong, Wing-Keung & Horowitz, Ira, 2016. "A stochastic-dominance approach to determining the optimal home-size purchase: The case of Hong Kong," MPRA Paper 69175, University Library of Munich, Germany.
    15. Cristiano Arbex Valle & John E Beasley & Nigel Meade, 2024. "Subset second-order stochastic dominance for enhanced indexation with diversification enforced by sector constraints," Papers 2404.16777, arXiv.org, revised Nov 2024.
    16. Schuhmacher, Frank & Eling, Martin, 2012. "A decision-theoretic foundation for reward-to-risk performance measures," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2077-2082.
    17. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning tests for Markowitz stochastic dominance," Journal of Econometrics, Elsevier, vol. 217(2), pages 291-311.
    18. Antoniadou, Elena & Koulovatianos, Christos & Mirman, Leonard J., 2013. "Strategic exploitation of a common-property resource under uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 28-39.
    19. Guo, Xu & Wong, Wing-Keung, 2016. "Multivariate Stochastic Dominance for Risk Averters and Risk Seekers," MPRA Paper 70637, University Library of Munich, Germany.
    20. Diebold, Franz & Bichler, Martin, 2017. "Matching with indifferences: A comparison of algorithms in the context of course allocation," European Journal of Operational Research, Elsevier, vol. 260(1), pages 268-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0088-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.