IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.04218.html
   My bibliography  Save this paper

Modeling Portfolios with Leptokurtic and Dependent Risk Factors

Author

Listed:
  • Piero Quatto
  • Gianmarco Vacca
  • Maria Grazia Zoia

Abstract

Recently, an approach to modeling portfolio distribution with risk factors distributed as Gram-Charlier (GC) expansions of the Gaussian law, has been conceived. GC expansions prove effective when dealing with moderately leptokurtic data. In order to cover the case of possibly severe leptokurtosis, the so-called GC-like expansions have been devised by reshaping parent leptokurtic distributions by means of orthogonal polynomials specific to them. In this paper, we focus on the hyperbolic-secant (HS) law as parent distribution whose GC-like expansions fit with kurtosis levels up to 19.4. A portfolio distribution has been obtained with risk factors modeled as GClike expansions of the HS law which duly account for excess kurtosis. Empirical evidence of the workings of the approach dealt with in the paper is included.

Suggested Citation

  • Piero Quatto & Gianmarco Vacca & Maria Grazia Zoia, 2021. "Modeling Portfolios with Leptokurtic and Dependent Risk Factors," Papers 2106.04218, arXiv.org.
  • Handle: RePEc:arx:papers:2106.04218
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.04218
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Morris, Carl N. & Lock, Kari F., 2009. "Unifying the Named Natural Exponential Families and Their Relatives," The American Statistician, American Statistical Association, vol. 63(3), pages 247-253.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    6. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    7. Peng Ding, 2014. "Three Occurrences of the Hyperbolic-Secant Distribution," The American Statistician, Taylor & Francis Journals, vol. 68(1), pages 32-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenichiro Shiraya & Tomohisa Yamakami, 2023. "Constructing Copulas Using Corrected Hermite Polynomial Expansion for Estimating Cross Foreign Exchange Volatility," Papers 2301.10044, arXiv.org.
    2. Yao, Can-Zhong & Li, Min-Jian, 2023. "GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quatto, Piero & Vacca, Gianmarco & Zoia, Maria Grazia, 2021. "A new copula for modeling portfolios with skewed, leptokurtic and high-order dependent risk factors," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    2. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    3. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    6. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    7. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    8. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
    9. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    10. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    11. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    12. Deepak K. Jadhav & Ramanathan Thekke Variyam, 2023. "Modified Expected Shortfall: a Coherent Risk Measure for Elliptical Family of Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 234-256, May.
    13. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    14. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    15. Kerkhof, F.L.J. & Melenberg, B. & Schumacher, J.M., 2003. "Testing Expected Shortfall Models for Derivative Positions," Discussion Paper 2003-24, Tilburg University, Center for Economic Research.
    16. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    17. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
    18. Juan Ignacio Pe~na & Rosa Rodriguez & Silvia Mayoral, 2022. "Tail Risk of Electricity Futures," Papers 2202.01732, arXiv.org.
    19. León, Ángel & Ñíguez, Trino-Manuel, 2021. "The transformed Gram Charlier distribution: Parametric properties and financial risk applications," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 323-349.
    20. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.04218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.