IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6653534.html
   My bibliography  Save this article

The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data

Author

Listed:
  • Hisham M. Almongy
  • Ehab M. Almetwally
  • Randa Alharbi
  • Dalia Alnagar
  • E. H. Hafez
  • Marwa M. Mohie El-Din
  • Ahmed Mostafa Khalil

Abstract

This paper is concerned with the estimation of the Weibull generalized exponential distribution (WGED) parameters based on the adaptive Type-II progressive (ATIIP) censored sample. Maximum likelihood estimation (MLE), maximum product spacing (MPS), and Bayesian estimation based on Markov chain Monte Carlo (MCMC) methods have been determined to find the best estimation method. The Monte Carlo simulation is used to compare the three methods of estimation based on the ATIIP-censored sample, and also, we made a bootstrap confidence interval estimation. We will analyze data related to the distribution about single carbon fiber and electrical data as real data cases to show how the schemes work in practice.

Suggested Citation

  • Hisham M. Almongy & Ehab M. Almetwally & Randa Alharbi & Dalia Alnagar & E. H. Hafez & Marwa M. Mohie El-Din & Ahmed Mostafa Khalil, 2021. "The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data," Complexity, Hindawi, vol. 2021, pages 1-15, February.
  • Handle: RePEc:hin:complx:6653534
    DOI: 10.1155/2021/6653534
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6653534.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6653534.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6653534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisângela C. Biazatti & Gauss M. Cordeiro & Gabriela M. Rodrigues & Edwin M. M. Ortega & Luís H. de Santana, 2022. "A Weibull-Beta Prime Distribution to Model COVID-19 Data with the Presence of Covariates and Censored Data," Stats, MDPI, vol. 5(4), pages 1-15, November.
    2. Juan Baz & Diego García-Zamora & Irene Díaz & Susana Montes & Luis Martínez, 2024. "Flexible-dimensional L-statistic for mean estimation of symmetric distributions," Statistical Papers, Springer, vol. 65(7), pages 4001-4024, September.
    3. Naif Alotaibi & Ibrahim Elbatal & Ehab M. Almetwally & Salem A. Alyami & A. S. Al-Moisheer & Mohammed Elgarhy, 2022. "Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data," Mathematics, MDPI, vol. 10(9), pages 1-25, May.
    4. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    5. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6653534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.