IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i6d10.1007_s00362-023-01517-x.html
   My bibliography  Save this article

An heuristic scree plot criterion for the number of factors

Author

Listed:
  • Ard H. J. den Reijer

    (Sveriges Riksbank)

  • Pieter W. Otter

    (University of Groningen)

  • Jan P. A. M. Jacobs

    (University of Groningen, CAMA and CIRANO)

Abstract

Cattel’s (Multivar Behav Res 1:245–276, 1966) heuristic determines the number of factors as the elbow point between ‘steep’ and ‘not steep’ in the scree plot. In contrast, an elbow is by definition absent in points on a hyberbole with corresponding equisized surfaces. We formalize this heuristic and propose a criterion to determine the number of factors by comparing surfaces under the scree plot. Monte Carlo simulations shows that the finite-sample properties of our proposed criterion outperform benchmarks in the dynamic factor model literature.

Suggested Citation

  • Ard H. J. den Reijer & Pieter W. Otter & Jan P. A. M. Jacobs, 2024. "An heuristic scree plot criterion for the number of factors," Statistical Papers, Springer, vol. 65(6), pages 3991-4000, August.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-023-01517-x
    DOI: 10.1007/s00362-023-01517-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01517-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01517-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    2. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    3. John Horn, 1965. "A rationale and test for the number of factors in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(2), pages 179-185, June.
    4. Louis Guttman, 1954. "Some necessary conditions for common-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 19(2), pages 149-161, June.
    5. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    6. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    7. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    8. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    9. Peres-Neto, Pedro R. & Jackson, Donald A. & Somers, Keith M., 2005. "How many principal components? stopping rules for determining the number of non-trivial axes revisited," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 974-997, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    3. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    4. Aboura, Sofiane & Chevallier, Julien, 2015. "Cross-market volatility index with Factor-DCC," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 132-140.
    5. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    7. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    8. De Simone, Francisco Nadal, 2024. "The transmission of U.S. monetary policy to small open economies," Journal of International Money and Finance, Elsevier, vol. 142(C).
    9. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    10. Philipp Gersing & Christoph Rust & Manfred Deistler, 2023. "Weak Factors are Everywhere," Papers 2307.10067, arXiv.org, revised Jan 2024.
    11. Aboura, Sofiane & Chevallier, Julien, 2015. "A cross-volatility index for hedging the country risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 25-41.
    12. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    13. Aboura, Sofiane & Chevallier, Julien, 2014. "Cross-market index with Factor-DCC," Economic Modelling, Elsevier, vol. 40(C), pages 158-166.
    14. Aboura, Sofiane & Chevallier, Julien, 2015. "Geographical diversification with a World Volatility Index," Journal of Multinational Financial Management, Elsevier, vol. 30(C), pages 62-82.
    15. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    16. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    17. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    18. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    19. Pellényi, Gábor, 2012. "A monetáris politika hatása a magyar gazdaságra. Elemzés strukturális, dinamikus faktormodellel [The sectoral effects of monetary policy in Hungary: a structural factor]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 263-284.
    20. Kabundi, Alain & De Simone, Francisco Nadal, 2020. "Monetary policy and systemic risk-taking in the euro area banking sector," Economic Modelling, Elsevier, vol. 91(C), pages 736-758.
    21. Aboura, Sofiane & Chevallier, Julien, 2017. "A new weighting-scheme for equity indexes," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 159-175.

    More about this item

    Keywords

    Factor model; Number of factors; Scree test;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-023-01517-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.