IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i5d10.1007_s00362-023-01493-2.html
   My bibliography  Save this article

Space-filling designs with a Dirichlet distribution for mixture experiments

Author

Listed:
  • Astrid Jourdan

    (ETIS UMR 8051, CY Paris University)

Abstract

Uniform designs are widely used for experiments with mixtures. The uniformity of the design points is usually evaluated with a discrepancy criterion. In this paper, we propose a new criterion to measure the deviation between the design point distribution and a Dirichlet distribution. The support of the Dirichlet distribution, is defined by the set of d-dimensional vectors whose entries are real numbers in the interval [0,1] such that the sum of the coordinates is equal to 1. This support is suitable for mixture experiments. Depending on its parameters, the Dirichlet distribution allows symmetric or asymmetric, uniform or more concentrated point distribution. The difference between the empirical and the target distributions is evaluated with the Kullback–Leibler divergence. We use two methods to estimate the divergence: the plug-in estimate and the nearest-neighbor estimate. The resulting two criteria are used to build space-filling designs for mixture experiments. In the particular case of the flat Dirichlet distribution, both criteria lead to uniform designs. They are compared to existing uniformity criteria. The advantage of the new criteria is that they allow other distributions than uniformity and they are fast to compute.

Suggested Citation

  • Astrid Jourdan, 2024. "Space-filling designs with a Dirichlet distribution for mixture experiments," Statistical Papers, Springer, vol. 65(5), pages 2667-2686, July.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:5:d:10.1007_s00362-023-01493-2
    DOI: 10.1007/s00362-023-01493-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01493-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01493-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Liu & Min-Qian Liu, 2016. "Construction of uniform designs for mixture experiments with complex constraints," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(8), pages 2172-2180, April.
    2. Chuang, S.C. & Hung, Y.C., 2010. "Uniform design over general input domains with applications to target region estimation in computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 219-232, January.
    3. Harry Joe, 1989. "Estimation of entropy and other functionals of a multivariate density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(4), pages 683-697, December.
    4. A. Jourdan & J. Franco, 2010. "Optimal Latin hypercube designs for the Kullback–Leibler criterion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 341-351, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Zikang & Liu, Liwei & Ning, Jianhui & Qin, Hong, 2020. "Sphere packing design for experiments with mixtures," Statistics & Probability Letters, Elsevier, vol. 164(C).
    2. Ashis K. Gangopadhyay & Robert disario & Dipak K. Dey, 1997. "A nonparametric approach to k-sample inference based on entropy-super-," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 237-252, September.
    3. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    4. Jan G. De Gooijer & Ao Yuan, 2008. "MDL Mean Function Selection in Semiparametric Kernel Regression Models," Tinbergen Institute Discussion Papers 08-046/4, Tinbergen Institute.
    5. Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
    6. Herrera Gómez, Marcos, 2010. "Causalidad Espacial. Enfoque No Paramétrico [Spatial Causality. Non-Parametric Approach]," MPRA Paper 61326, University Library of Munich, Germany.
    7. Kojadinovic, Ivan, 2005. "Relevance measures for subset variable selection in regression problems based on k-additive mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1205-1227, June.
    8. Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
    9. Hino, Hideitsu & Koshijima, Kensuke & Murata, Noboru, 2015. "Non-parametric entropy estimators based on simple linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 72-84.
    10. Amato, Federico & Laib, Mohamed & Guignard, Fabian & Kanevski, Mikhail, 2020. "Analysis of air pollution time series using complexity-invariant distance and information measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Kojadinovic, Ivan, 2004. "Agglomerative hierarchical clustering of continuous variables based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 269-294, June.
    12. Virginia Lacal & Dag TjØstheim, 2017. "Local Gaussian Autocorrelation and Tests for Serial Independence," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 51-71, January.
    13. Chen, Ray-Bing & Hsu, Yen-Wen & Hung, Ying & Wang, Weichung, 2014. "Discrete particle swarm optimization for constructing uniform design on irregular regions," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 282-297.
    14. Lin, D.K.J. & Sharpe, C. & Winker, P., 2010. "Optimized U-type designs on flexible regions," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1505-1515, June.
    15. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    16. Mariano Matilla‐García & José Miguel Rodríguez & Manuel Ruiz Marín, 2010. "A symbolic test for testing independence between time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 76-85, March.
    17. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    18. Zhang, Mei & Zhou, Yong-Dao, 2016. "Spherical discrepancy for designs on hyperspheres," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 226-234.
    19. Marrelec, Guillaume & Giron, Alain & Messio, Laura, 2021. "Exponential decay of pairwise correlation in Gaussian graphical models with an equicorrelational one-dimensional connection pattern," Statistics & Probability Letters, Elsevier, vol. 171(C).
    20. János Pintér & Zoltán Horváth, 2013. "Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints," Journal of Global Optimization, Springer, vol. 57(1), pages 191-215, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:5:d:10.1007_s00362-023-01493-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.