Non-parametric entropy estimators based on simple linear regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.03.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
- Harry Joe, 1989. "Estimation of entropy and other functionals of a multivariate density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(4), pages 683-697, December.
- Mack, Y. P. & Rosenblatt, M., 1979. "Multivariate k-nearest neighbor density estimates," Journal of Multivariate Analysis, Elsevier, vol. 9(1), pages 1-15, March.
- Hall, Peter, 1986. "On powerful distributional tests based on sample spacings," Journal of Multivariate Analysis, Elsevier, vol. 19(2), pages 201-224, August.
- Gyorfi, Laszlo & van der Meulen, Edward C., 1987. "Density-free convergence properties of various estimators of entropy," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 425-436, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ao Yuan & Jan G. De Gooijer, 2007.
"Semiparametric Regression with Kernel Error Model,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
- Ao Yuan & Jan G. De Gooijer, 2006. "Semiparametric Regression with Kernel Error Model," Tinbergen Institute Discussion Papers 06-058/4, Tinbergen Institute.
- Penrose, Mathew D., 2000. "Central limit theorems for k-nearest neighbour distances," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 295-320, February.
- Jan G. De Gooijer & Ao Yuan, 2008. "MDL Mean Function Selection in Semiparametric Kernel Regression Models," Tinbergen Institute Discussion Papers 08-046/4, Tinbergen Institute.
- Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
- Amato, Federico & Laib, Mohamed & Guignard, Fabian & Kanevski, Mikhail, 2020. "Analysis of air pollution time series using complexity-invariant distance and information measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Chang, Fang & Qiu, Weiliang & Zamar, Ruben H. & Lazarus, Ross & Wang, Xiaogang, 2010. "clues: An R Package for Nonparametric Clustering Based on Local Shrinking," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i04).
- Mariano Matilla‐García & José Miguel Rodríguez & Manuel Ruiz Marín, 2010. "A symbolic test for testing independence between time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 76-85, March.
- Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
- Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
- Marrelec, Guillaume & Giron, Alain & Messio, Laura, 2021. "Exponential decay of pairwise correlation in Gaussian graphical models with an equicorrelational one-dimensional connection pattern," Statistics & Probability Letters, Elsevier, vol. 171(C).
- Cheng, Philip E., 1995. "A note on strong convergence rates in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 357-364, September.
- Menéndez, M. & Morales, D. & Pardo, L., 1997. "Maximum entropy principle and statistical inference on condensed ordered data," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 85-93, May.
- Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
- Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús & Paelinck, Jean, 2010. "A Non-Parametric Approach to Spatial Causality," MPRA Paper 36768, University Library of Munich, Germany.
- Ashis K. Gangopadhyay & Robert disario & Dipak K. Dey, 1997. "A nonparametric approach to k-sample inference based on entropy-super-," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 237-252, September.
- Lucio Barabesi, 2001. "Local parametric density estimation methods in line transect sampling," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 22-38.
- Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
- Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
- Tomasz Jetka & Karol Nienałtowski & Tomasz Winarski & Sławomir Błoński & Michał Komorowski, 2019. "Information-theoretic analysis of multivariate single-cell signaling responses," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-23, July.
- Burman, Prabir, 2002. "Estimation of equifrequency histograms," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 227-238, February.
More about this item
Keywords
Entropy estimation; Non-parametric; Simple linear regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:89:y:2015:i:c:p:72-84. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.