IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i3d10.1007_s00362-022-01341-9.html
   My bibliography  Save this article

A weighted U-statistic based change point test for multivariate time series

Author

Listed:
  • Junwei Hu

    (Nanjing University)

  • Lihong Wang

    (Nanjing University)

Abstract

In this paper we study the change point detection for the mean of multivariate time series. We construct the weighted U-statistic change point tests based on the weight function $$1/{\sqrt{t(1-t)}}$$ 1 / t ( 1 - t ) and some suitable kernel functions. We establish the asymptotic distribution of the test statistic under the null hypothesis and the consistency under the alternatives. A bootstrap procedure is applied to approximate the distribution of the test statistic and it is proved that the test statistic based on bootstrap sampling has the same asymptotic distribution as the original statistic. Numerical simulation and real data analysis show the good performance of the weighted change point test especially when the change point location is not in the middle of the observation period.

Suggested Citation

  • Junwei Hu & Lihong Wang, 2023. "A weighted U-statistic based change point test for multivariate time series," Statistical Papers, Springer, vol. 64(3), pages 753-778, June.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:3:d:10.1007_s00362-022-01341-9
    DOI: 10.1007/s00362-022-01341-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01341-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01341-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
    2. Michael Messer & Stefan Albert & Gaby Schneider, 2018. "The multiple filter test for change point detection in time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 589-607, August.
    3. Liu, Bin & Zhou, Cheng & Zhang, Xinsheng, 2019. "A tail adaptive approach for change point detection," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 33-48.
    4. Bin Liu & Cheng Zhou & Xinsheng Zhang & Yufeng Liu, 2020. "A unified data‐adaptive framework for high dimensional change point detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 933-963, September.
    5. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    6. Qiang Li & Liming Wang, 2020. "Robust change point detection method via adaptive LAD-LASSO," Statistical Papers, Springer, vol. 61(1), pages 109-121, February.
    7. Annika Betken, 2016. "Testing for Change-Points in Long-Range Dependent Time Series by Means of a Self-Normalized Wilcoxon Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 785-809, November.
    8. Dehling, Herold & Wendler, Martin, 2010. "Central limit theorem and the bootstrap for U-statistics of strongly mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 126-137, January.
    9. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.
    10. Olimjon Sharipov & Martin Wendler, 2012. "Bootstrap for the sample mean and for -statistics of mixing and near-epoch dependent processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 317-342.
    11. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bin & Zhou, Cheng & Zhang, Xinsheng, 2019. "A tail adaptive approach for change point detection," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 33-48.
    2. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    3. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    4. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    5. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    6. Dehling, Herold & Sharipov, Olimjon Sh. & Wendler, Martin, 2015. "Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 200-215.
    7. Cho, Haeran & Fryzlewicz, Piotr, 2023. "Multiple change point detection under serial dependence: wild contrast maximisation and gappy Schwarz algorithm," LSE Research Online Documents on Economics 120085, London School of Economics and Political Science, LSE Library.
    8. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    10. Matúš Maciak & Michal Pešta & Barbora Peštová, 2020. "Changepoint in dependent and non-stationary panels," Statistical Papers, Springer, vol. 61(4), pages 1385-1407, August.
    11. Wingert, Simon & Mboya, Mwasi Paza & Sibbertsen, Philipp, 2020. "Distinguishing between breaks in the mean and breaks in persistence under long memory," Economics Letters, Elsevier, vol. 193(C).
    12. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
    13. Wenger, Kai & Less, Vivien, 2020. "A modified Wilcoxon test for change points in long-range dependent time series," Economics Letters, Elsevier, vol. 192(C).
    14. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    15. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Tuomas Rajala & Petteri Packalen & Mari Myllymäki & Annika Kangas, 2023. "Improving Detection of Changepoints in Short and Noisy Time Series with Local Correlations: Connecting the Events in Pixel Neighbourhoods," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 564-590, September.
    17. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    18. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    19. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    20. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:3:d:10.1007_s00362-022-01341-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.