IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v27y2021i5d10.1007_s10732-021-09476-y.html
   My bibliography  Save this article

Bi-criteria multiple knapsack problem with grouped items

Author

Listed:
  • Francisco Castillo-Zunino

    (Georgia Institute of Technology)

  • Pinar Keskinocak

    (Georgia Institute of Technology)

Abstract

The multiple knapsack problem with grouped items aims to maximize rewards by assigning groups of items among multiple knapsacks, without exceeding knapsack capacities. Either all items in a group are assigned or none at all. We study the bi-criteria variation of the problem, where capacities can be exceeded and the second objective is to minimize the maximum exceeded knapsack capacity. We propose approximation algorithms that run in pseudo-polynomial time and guarantee that rewards are not less than the optimal solution of the capacity-feasible problem, with a bound on exceeded knapsack capacities. The algorithms have different approximation factors, where no knapsack capacity is exceeded by more than 2, 1, and $$1/2$$ 1 / 2 times the maximum knapsack capacity. The approximation guarantee can be improved to $$1/3$$ 1 / 3 when all knapsack capacities are equal. We also prove that for certain cases, solutions obtained by the approximation algorithms are always optimal—they never exceed knapsack capacities. To obtain capacity-feasible solutions, we propose a binary-search heuristic combined with the approximation algorithms. We test the performance of the algorithms and heuristics in an extensive set of experiments on randomly generated instances and show they are efficient and effective, i.e., they run reasonably fast and generate good quality solutions.

Suggested Citation

  • Francisco Castillo-Zunino & Pinar Keskinocak, 2021. "Bi-criteria multiple knapsack problem with grouped items," Journal of Heuristics, Springer, vol. 27(5), pages 747-789, October.
  • Handle: RePEc:spr:joheur:v:27:y:2021:i:5:d:10.1007_s10732-021-09476-y
    DOI: 10.1007/s10732-021-09476-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-021-09476-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-021-09476-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woodcock, Andrew J. & Wilson, John M., 2010. "A hybrid tabu search/branch & bound approach to solving the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 566-578, December.
    2. V. Roshan Joseph & Evren Gul & Shan Ba, 2015. "Maximum projection designs for computer experiments," Biometrika, Biometrika Trust, vol. 102(2), pages 371-380.
    3. Pasquale Avella & Maurizio Boccia & Igor Vasilyev, 2010. "A computational study of exact knapsack separation for the generalized assignment problem," Computational Optimization and Applications, Springer, vol. 45(3), pages 543-555, April.
    4. Schuurman, P. & Vredeveld, T., 2005. "Performance guarantees of local search for multiprocessor scheduling," Research Memorandum 055, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Hans Kellerer & Ulrich Pferschy, 1999. "A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 59-71, July.
    6. Petra Schuurman & Tjark Vredeveld, 2007. "Performance Guarantees of Local Search for Multiprocessor Scheduling," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 52-63, February.
    7. Marius Posta & Jacques Ferland & Philippe Michelon, 2012. "An exact method with variable fixing for solving the generalized assignment problem," Computational Optimization and Applications, Springer, vol. 52(3), pages 629-644, July.
    8. M. Dawande & J. Kalagnanam & P. Keskinocak & F.S. Salman & R. Ravi, 2000. "Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 171-186, June.
    9. John J. H. Forrest & Jayant Kalagnanam & Laszlo Ladanyi, 2006. "A Column-Generation Approach to the Multiple Knapsack Problem with Color Constraints," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 129-134, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefka Fidanova & Krassimir Todorov Atanassov, 2021. "ACO with Intuitionistic Fuzzy Pheromone Updating Applied on Multiple-Constraint Knapsack Problem," Mathematics, MDPI, vol. 9(13), pages 1-7, June.
    2. Cong Chen & Yinfeng Xu, 0. "Coordination mechanisms for scheduling selfish jobs with favorite machines," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-33.
    3. Cong Chen & Yinfeng Xu, 2020. "Coordination mechanisms for scheduling selfish jobs with favorite machines," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 333-365, August.
    4. Mikhail A. Bragin & Peter B. Luh & Joseph H. Yan & Nanpeng Yu & Gary A. Stern, 2015. "Convergence of the Surrogate Lagrangian Relaxation Method," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 173-201, January.
    5. Q. Q. Nong & G. Q. Fan & Q. Z. Fang, 2017. "A coordination mechanism for a scheduling game with parallel-batching machines," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 567-579, February.
    6. Guoqiang Fan & Qingqin Nong, 2018. "A Coordination Mechanism for a Scheduling Game with Uniform-Batching Machines," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.
    7. Cole, Richard & Correa, Jose & Gkatzelis, Vasillis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," LSE Research Online Documents on Economics 103081, London School of Economics and Political Science, LSE Library.
    8. Pasquale Avella & Maurizio Boccia & Igor Vasilyev, 2012. "Computational Testing of a Separation Procedure for the Knapsack Set with a Single Continuous Variable," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 165-171, February.
    9. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    10. Liang Chen & Wei-Kun Chen & Mu-Ming Yang & Yu-Hong Dai, 2021. "An exact separation algorithm for unsplittable flow capacitated network design arc-set polyhedron," Journal of Global Optimization, Springer, vol. 81(3), pages 659-689, November.
    11. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    12. Elif Akçalı & Alper Üngör & Reha Uzsoy, 2005. "Short‐term capacity allocation problem with tool and setup constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 754-764, December.
    13. Xueqi Wu & Zhi‐Long Chen, 2022. "Fulfillment scheduling for buy‐online‐pickup‐in‐store orders," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2982-3003, July.
    14. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    15. Tobias Brueggemann & Johann L. Hurink & Tjark Vredeveld & Gerhard J. Woeginger, 2011. "Exponential size neighborhoods for makespan minimization scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 795-803, December.
    16. Zäpfel, Günther & Bögl, Michael, 2012. "Two heuristic solution concepts for the vehicle selection problem in line haul transports," European Journal of Operational Research, Elsevier, vol. 217(2), pages 448-458.
    17. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    18. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    19. Fritz Bökler & Sophie N. Parragh & Markus Sinnl & Fabien Tricoire, 2024. "An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 263-290, August.
    20. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:27:y:2021:i:5:d:10.1007_s10732-021-09476-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.