IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i2d10.1007_s00362-019-01111-0.html
   My bibliography  Save this article

A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion

Author

Listed:
  • Yao Kang

    (Jilin University)

  • Dehui Wang

    (Jilin University)

  • Kai Yang

    (Changchun University of Technology)

Abstract

The present work introduces a mixture INAR(1) model based on the mixing Pegram and binomial thinning operators with a finite range $$\{0,1,\ldots ,n\}$$ { 0 , 1 , … , n } . The new model can be used to handle equidispersion, underdispersion, overdispersion, zero-inflation and multimodality. Several probabilistic and statistical properties are explored. Estimators of the model parameters are derived by the conditional maximum likelihood method. The asymptotic properties and numerical results of the estimators are also studied. In addition, the forecasting problem is addressed. Applications to real data sets are given to show the application of the new model.

Suggested Citation

  • Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:2:d:10.1007_s00362-019-01111-0
    DOI: 10.1007/s00362-019-01111-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01111-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01111-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    2. Han Li & Kai Yang & Shishun Zhao & Dehui Wang, 2018. "First-order random coefficients integer-valued threshold autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 305-331, July.
    3. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    4. Tobias A. Möller & Christian H. Weiß & Hee-Young Kim & Andrei Sirchenko, 2018. "Modeling Zero Inflation in Count Data Time Series with Bounded Support," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 589-609, June.
    5. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    6. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    7. Mansour Aghababaei Jazi & Geoff Jones & Chin-Diew Lai, 2012. "First-order integer valued AR processes with zero inflated poisson innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(6), pages 954-963, November.
    8. Marcelo Bourguignon & Josemar Rodrigues & Manoel Santos-Neto, 2019. "Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(1), pages 101-118, January.
    9. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.
    10. Christian H. Weiß & Philip K. Pollett, 2014. "Binomial Autoregressive Processes With Density-Dependent Thinning," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 115-132, March.
    11. Cui, Yunwei & Lund, Robert, 2010. "Inference in binomial models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1985-1990, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wooi Chen Khoo & Seng Huat Ong & Biswas Atanu, 2022. "Coherent Forecasting for a Mixed Integer-Valued Time Series Model," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    2. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.
    2. Kai Yang & Yiwei Zhao & Han Li & Dehui Wang, 2023. "On bivariate threshold Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 931-963, November.
    3. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    4. Zhang, Rui, 2024. "Asymmetric beta-binomial GARCH models for time series with bounded support," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    5. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.
    6. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    7. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    8. Huaping Chen & Qi Li & Fukang Zhu, 2022. "A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 243-270, June.
    9. Raju Maiti & Atanu Biswas & Bibhas Chakraborty, 2018. "Modelling of low count heavy tailed time series data consisting large number of zeros and ones," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 407-435, August.
    10. Tobias A. Möller & Christian H. Weiß & Hee-Young Kim & Andrei Sirchenko, 2018. "Modeling Zero Inflation in Count Data Time Series with Bounded Support," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 589-609, June.
    11. Han Li & Zijian Liu & Kai Yang & Xiaogang Dong & Wenshan Wang, 2024. "A pth-order random coefficients mixed binomial autoregressive process with explanatory variables," Computational Statistics, Springer, vol. 39(5), pages 2581-2604, July.
    12. Han Li & Kai Yang & Shishun Zhao & Dehui Wang, 2018. "First-order random coefficients integer-valued threshold autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 305-331, July.
    13. Miroslav M. Ristić & Aleksandar S. Nastić & Ana V. Miletić Ilić, 2013. "A geometric time series model with dependent Bernoulli counting series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 466-476, July.
    14. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    15. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    16. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    17. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    18. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
    19. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    20. Wooi Chen Khoo & Seng Huat Ong & Biswas Atanu, 2022. "Coherent Forecasting for a Mixed Integer-Valued Time Series Model," Mathematics, MDPI, vol. 10(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:2:d:10.1007_s00362-019-01111-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.