IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1985-1990.html
   My bibliography  Save this article

Inference in binomial models

Author

Listed:
  • Cui, Yunwei
  • Lund, Robert

Abstract

This paper studies inference methods for stationary time series with binomial distributions. Such series describe, for example, the number of rainy days in consecutive weeks. First, we formulate the renewal sequence version of the model that seemingly generates a new class of stationary binomial series. The model is shown to obey an AR(1) recursion in cases where the renewal lifetime has a constant hazard rate past lag one. Explicit asymptotic variances of the parameter estimators in the AR(1) case are derived from conditional least squares methods; likelihood techniques are also considered.

Suggested Citation

  • Cui, Yunwei & Lund, Robert, 2010. "Inference in binomial models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1985-1990, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1985-1990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00253-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yunwei Cui & Robert Lund, 2009. "A new look at time series of counts," Biometrika, Biometrika Trust, vol. 96(4), pages 781-792.
    2. M. Kachour & J. F. Yao, 2009. "First‐order rounded integer‐valued autoregressive (RINAR(1)) process," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 417-448, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav M. Ristić & Aleksandar S. Nastić & Ana V. Miletić Ilić, 2013. "A geometric time series model with dependent Bernoulli counting series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 466-476, July.
    2. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    3. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
    4. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianqing Liu & Xiaohui Yuan, 2013. "Random rounded integer-valued autoregressive conditional heteroskedastic process," Statistical Papers, Springer, vol. 54(3), pages 645-683, August.
    2. Svetunkov, Ivan & Boylan, John E., 2023. "iETS: State space model for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 265(C).
    3. Hee-Young Kim & Christian H. Weiß & Tobias A. Möller, 2020. "Models for autoregressive processes of bounded counts: How different are they?," Computational Statistics, Springer, vol. 35(4), pages 1715-1736, December.
    4. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    5. Bernard Bercu & Vassili Blandin, 2015. "Limit theorems for bifurcating integer-valued autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 33-67, April.
    6. Kirchner, Matthias & Torrisi, Giovanni Luca, 2023. "Fluctuations and precise deviations of cumulative INAR time series," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 1-32.
    7. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    8. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    9. Raju Maiti & Atanu Biswas & Samarjit Das, 2016. "Coherent forecasting for count time series using Box–Jenkins's AR(p) model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 123-145, May.
    10. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    11. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    12. Borges, Patrick & Molinares, Fabio Fajardo & Bourguignon, Marcelo, 2016. "A geometric time series model with inflated-parameter Bernoulli counting series," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 264-272.
    13. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    14. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1985-1990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.