IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v100y2016i4d10.1007_s10182-015-0264-6.html
   My bibliography  Save this article

Self-exciting threshold binomial autoregressive processes

Author

Listed:
  • Tobias A. Möller

    (Helmut Schmidt University)

  • Maria Eduarda Silva

    (University of Porto)

  • Christian H. Weiß

    (Helmut Schmidt University)

  • Manuel G. Scotto

    (IST University of Lisbon)

  • Isabel Pereira

    (University of Aveiro)

Abstract

We introduce a new class of integer-valued self-exciting threshold models, which is based on the binomial autoregressive model of order one as introduced by McKenzie (Water Resour Bull 21:645–650, 1985. doi: 10.1111/j.1752-1688.1985.tb05379.x ). Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation and forecasting are addressed. Finally, the performance of these models is illustrated through a simulation study and an empirical application to a set of measle cases in Germany.

Suggested Citation

  • Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.
  • Handle: RePEc:spr:alstar:v:100:y:2016:i:4:d:10.1007_s10182-015-0264-6
    DOI: 10.1007/s10182-015-0264-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-015-0264-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-015-0264-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    2. Markku Lanne & Pentti Saikkonen, 2005. "Non-linear GARCH models for highly persistent volatility," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 251-276, July.
    3. Noelle I. Samia & Kung-Sik Chan & Nils Chr. Stenseth, 2007. "A generalized threshold mixed model for analyzing nonnormal nonlinear time series, with application to plague in Kazakhstan," Biometrika, Biometrika Trust, vol. 94(1), pages 101-118.
    4. Wai-Sum Chan & Albert Wong & Howell Tong, 2004. "Some Nonlinear Threshold Autoregressive Time Series Models for Actuarial Use," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(4), pages 37-61.
    5. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    6. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    7. Chao Wang & Heng Liu & Jian-Feng Yao & Richard A. Davis & Wai Keung Li, 2014. "Self-Excited Threshold Poisson Autoregression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 777-787, June.
    8. Christian H. Weiß & Philip K. Pollett, 2014. "Binomial Autoregressive Processes With Density-Dependent Thinning," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 115-132, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    2. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    3. Han Li & Kai Yang & Shishun Zhao & Dehui Wang, 2018. "First-order random coefficients integer-valued threshold autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 305-331, July.
    4. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
    5. Tobias A. Möller & Christian H. Weiß & Hee-Young Kim & Andrei Sirchenko, 2018. "Modeling Zero Inflation in Count Data Time Series with Bounded Support," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 589-609, June.
    6. Zhang, Rui, 2024. "Asymmetric beta-binomial GARCH models for time series with bounded support," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    7. Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Li & Zijian Liu & Kai Yang & Xiaogang Dong & Wenshan Wang, 2024. "A pth-order random coefficients mixed binomial autoregressive process with explanatory variables," Computational Statistics, Springer, vol. 39(5), pages 2581-2604, July.
    2. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
    3. Zhang, Rui, 2024. "Asymmetric beta-binomial GARCH models for time series with bounded support," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    4. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.
    5. Kai Yang & Yiwei Zhao & Han Li & Dehui Wang, 2023. "On bivariate threshold Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 931-963, November.
    6. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    7. Wu, K.Y.K. & Li, W.K., 2015. "Double Generalized Threshold Models with constraint on the dispersion by the mean," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 59-73.
    8. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    9. Huaping Chen & Qi Li & Fukang Zhu, 2023. "A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 805-826, October.
    10. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    11. Jon Michel, 2020. "The Limiting Distribution of a Non‐Stationary Integer Valued GARCH(1,1) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 351-356, March.
    12. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    13. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    14. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    15. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    16. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    17. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    18. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    19. Levine, Michael & Li, Jinguang (Tony), 2012. "A simple additivity test for conditionally heteroscedastic nonlinear autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2421-2429.
    20. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:100:y:2016:i:4:d:10.1007_s10182-015-0264-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.