Can model averaging improve propensity score based estimation of average treatment effects?
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kitagawa, Toru & Muris, Chris, 2016.
"Model averaging in semiparametric estimation of treatment effects,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 46/15, Institute for Fiscal Studies.
- Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
- Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
- Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
- Cheng Ju & Mary Combs & Samuel D. Lendle & Jessica M. Franklin & Richard Wyss & Sebastian Schneeweiss & Mark J. van der Laan, 2019. "Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2216-2236, September.
- Yang Ning & Peng Sida & Kosuke Imai, 2020. "Robust estimation of causal effects via a high-dimensional covariate balancing propensity score," Biometrika, Biometrika Trust, vol. 107(3), pages 533-554.
- Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
- Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
- Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021.
"Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
- Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2016. "Focused Information Criterion and Model Averaging for Large Panels with a Multifactor Error Structure," IEAS Working Paper : academic research 16-A016, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
- Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022.
"Uncertain identification,"
Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
- Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2017. "Uncertain identification," CeMMAP working papers 18/17, Institute for Fiscal Studies.
- Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2020. "Uncertain Identification," CeMMAP working papers CWP33/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2017. "Uncertain identification," CeMMAP working papers CWP18/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
- Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
- Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
- Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
- Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
- Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
- Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
- Aman Ullah & Xinyu Zhang, 2015. "Grouped Model Averaging for Finite Sample Size," Working Papers 201501, University of California at Riverside, Department of Economics.
- Hounyo, Ulrich & Lahiri, Kajal, 2023.
"Estimating the variance of a combined forecast: Bootstrap-based approach,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
- Ulrich Hounyo & Kajal Lahiri, 2021. "Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach," CREATES Research Papers 2021-14, Department of Economics and Business Economics, Aarhus University.
- Shaobo Jin & Sebastian Ankargren, 2019. "Frequentist Model Averaging in Structural Equation Modelling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 84-104, March.
- Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022.
"Asymptotic properties of the weighted average least squares (WALS) estimator,"
Tinbergen Institute Discussion Papers
22-022/III, Tinbergen Institute.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted-average least squares (WALS) estimator," EIEF Working Papers Series 2203, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2022.
- Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
- Alena Skolkova, 2023. "Model Averaging with Ridge Regularization," CERGE-EI Working Papers wp758, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Timothy B. Armstrong & Patrick Kline & Liyang Sun, 2023.
"Adapting to Misspecification,"
Papers
2305.14265, arXiv.org, revised Aug 2024.
- Timothy Armstrong & Patrick M. Kline & Liyang Sun, 2024. "Adapting to Misspecification," NBER Working Papers 32906, National Bureau of Economic Research, Inc.
- Timothy B. Armstrong & Patrick Kline & Liyang Sun, 2024. "Adapting to misspecification," CeMMAP working papers 18/24, Institute for Fiscal Studies.
- Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
- Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
More about this item
Keywords
.;JEL classification:
- C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-03-11 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ifauwp:2024_001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ali Ghooloo (email available below). General contact details of provider: https://edirc.repec.org/data/ifagvse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.