IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i1d10.1007_s00362-017-0940-6.html
   My bibliography  Save this article

Multiple mediation analysis for interval-valued data

Author

Listed:
  • Antonio Calcagnì

    (University of Trento)

  • Luigi Lombardi

    (University of Trento)

  • Lorenzo Avanzi

    (University of Trento)

  • Eduardo Pascali

    (University of Salento)

Abstract

Mediation analysis is an important statistical approach to evaluate the relationships among observed variables. The most commonly used models for mediation analysis handle single-valued variables. However, there are several circumstances (e.g., dimensionality reduction of large datasets, clinical patient courses, repeated measures, masked data, uncertain data) in which the collected information can be represented more naturally by means of intervals. In these cases, standard mediation analyses can be ill-suited. Although interval-valued variables can be transformed into standard single-valued variables, such procedures may mask some relevant information provided by intervals. In this article, we present a novel and simple model (IMedA) to perform mediation analysis on interval-valued variables which is based on both the symbolic regression approach and the regression based mediation framework. We also generalize Stolzenberg’s decomposition of effects to cope with interval-valued data. We further introduce a specific variance based decomposition procedure to descriptively evaluate the sizes of such effects. Finally, to better highlight the IMedA features we apply our model to a real case study from behavioral contexts.

Suggested Citation

  • Antonio Calcagnì & Luigi Lombardi & Lorenzo Avanzi & Eduardo Pascali, 2020. "Multiple mediation analysis for interval-valued data," Statistical Papers, Springer, vol. 61(1), pages 347-369, February.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:1:d:10.1007_s00362-017-0940-6
    DOI: 10.1007/s00362-017-0940-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-017-0940-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-017-0940-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    3. Angela Blanco-Fernández & Peter Winker, 2016. "Data generation processes and statistical management of interval data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 475-494, October.
    4. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2012. "Testing fuzzy hypotheses based on vague observations: a p-value approach," Statistical Papers, Springer, vol. 53(2), pages 469-484, May.
    5. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    6. M. Alkhamisi, 2010. "Simulation study of new estimators combining the SUR ridge regression and the restricted least squares methodologies," Statistical Papers, Springer, vol. 51(3), pages 651-672, September.
    7. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    8. Guadalupe Gómez & M. Calle & Ramon Oller, 2004. "Frequentist and Bayesian approaches for interval-censored data," Statistical Papers, Springer, vol. 45(2), pages 139-173, April.
    9. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    10. Zhiyong Zhang & Lijuan Wang, 2013. "Methods for Mediation Analysis with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 154-184, January.
    11. Lima Neto, Eufrasio de A. & de Carvalho, Francisco de A.T., 2008. "Centre and Range method for fitting a linear regression model to symbolic interval data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1500-1515, January.
    12. Thomas Augustin, 2002. "Expected utility within a generalized concept of probability — a comprehensive framework for decision making under ambiguity," Statistical Papers, Springer, vol. 43(1), pages 5-22, January.
    13. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    14. Sévérien Nkurunziza & S. Ejaz Ahmed, 2011. "Estimation strategies for the regression coefficient parameter matrix in multivariate multiple regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(4), pages 387-406, November.
    15. Luo, Peng & Geng, Zhi, 2016. "Causal mediation analysis for survival outcome with unobserved mediator–outcome confounders," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 336-347.
    16. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    2. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    3. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    4. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    5. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    6. Yan Sun & Guanghua Lian & Zudi Lu & Jennifer Loveland & Isaac Blackhurst, 2020. "Modeling the Variance of Return Intervals Toward Volatility Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 492-519, July.
    7. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    8. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    9. Lin, Wei & González-Rivera, Gloria, 2016. "Interval-valued time series models: Estimation based on order statistics exploring the Agriculture Marketing Service data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 694-711.
    10. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    11. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    12. Carlo Drago & Roberto Ricciuti, 2019. "An interval variables approach to address measurement uncertainty in governance indicators," Economics Bulletin, AccessEcon, vol. 39(1), pages 626-635.
    13. Chang, Meng-Shiuh & Ju, Peijie & Liu, Yilei & Hsueh, Shao-Chieh, 2022. "Determining hedges and safe havens for stocks using interval analysis," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    14. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    15. Gloria Gonzalez-Rivera & Javier Arroyo & Carlos Mate, 2011. "Forecasting with Interval and Histogram Data. Some Financial Applications," Working Papers 201438, University of California at Riverside, Department of Economics.
    16. Eufr�sio de A. Lima Neto & Ulisses U. dos Anjos, 2015. "Regression model for interval-valued variables based on copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2010-2029, September.
    17. Sun, Yuying & Bao, Qin & Zheng, Jiali & Wang, Shouyang, 2020. "Assessing the price dynamics of onshore and offshore RMB markets: An ITS model approach," China Economic Review, Elsevier, vol. 62(C).
    18. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    19. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    20. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:1:d:10.1007_s00362-017-0940-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.