Logistic Regression Models with Unspecified Low Dose–Response Relationships and Experimental Designs for Hormesis Studies
Author
Abstract
Suggested Citation
DOI: 10.1111/risa.13588
Download full text from publisher
References listed on IDEAS
- Regina G Belz & Hans-Peter Piepho, 2012. "Modeling Effective Dosages in Hormetic Dose-Response Studies," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
- Steven B. Kim & Scott M. Bartell & Daniel L. Gillen, 2015. "Estimation of a Benchmark Dose in the Presence or Absence of Hormesis Using Posterior Averaging," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 396-408, March.
- Daniel L. Hunt & Dale Bowman, 2004. "A Parametric Model for Detecting Hormetic Effects in Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 65-72, February.
- Holger Dette & Andrey Pepelyshev & Weng Kee Wong, 2011. "Optimal Experimental Design Strategies for Detecting Hormesis," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1949-1960, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Víctor Casero-Alonso & Andrey Pepelyshev & Weng K. Wong, 2018. "A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose," Statistical Papers, Springer, vol. 59(4), pages 1307-1324, December.
- Dette, Holger & Scheder, Regine, 2008. "A finite sample comparison of nonparametric estimates of the effective dose in quantal bioassay," Technical Reports 2008,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Regina G Belz & Hans-Peter Piepho, 2012. "Modeling Effective Dosages in Hormetic Dose-Response Studies," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
- Holger Dette & Andrey Pepelyshev & Weng Kee Wong, 2011. "Optimal Experimental Design Strategies for Detecting Hormesis," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1949-1960, December.
- Steven B Kim & Dong Sub Kim & Christina Magana-Ramirez, 2021. "Applications of statistical experimental designs to improve statistical inference in weed management," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-21, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:41:y:2021:i:1:p:92-109. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.