IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v59y2018i2d10.1007_s00362-016-0788-1.html
   My bibliography  Save this article

Statistical inference based on Lindley record data

Author

Listed:
  • A. Asgharzadeh

    (Faculty of Mathematical Sciences University of Mazandaran)

  • A. Fallah

    (Payame Noor University)

  • M. Z. Raqab

    (Kuwait University
    The University of Jordan)

  • R. Valiollahi

    (Semnan University)

Abstract

Based on record statistics from Lindley distribution, we consider here the problem of estimating the model parameter and predicting the unobserved records. Frequentist and Bayesian analyses are discussed for making some inferences for the model parameter and prediction of unobserved records. Frequentist methods involving maximum likelihood estimation and moments based estimation and Bayesian sampling-based technique are applied for estimating the unknown shape parameter as well as predicting the future unobserved units. The corresponding point predictors and credible intervals of future record values based on an informative set of records can be developed. Real data analysis has been performed for illustrative purposes.

Suggested Citation

  • A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
  • Handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0788-1
    DOI: 10.1007/s00362-016-0788-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0788-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0788-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. H. Zakerzadeh & A. Jafari, 2015. "Inference on the parameters of two Weibull distributions based on record values," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 25-40, March.
    3. R. Arabi Belaghi & M. Arashi & S. Tabatabaey, 2015. "Improved estimators of the distribution function based on lower record values," Statistical Papers, Springer, vol. 56(2), pages 453-477, May.
    4. Balakrishnan, N. & Chan, P. S., 1998. "On the normal record values and associated inference," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 73-80, July.
    5. Gómez-Déniz, Emilio & Sordo, Miguel A. & Calderín-Ojeda, Enrique, 2014. "The Log–Lindley distribution as an alternative to the beta regression model with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 49-57.
    6. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    7. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    8. Krishna, Hare & Kumar, Kapil, 2011. "Reliability estimation in Lindley distribution with progressively type II right censored sample," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 281-294.
    9. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajni Goel & Hare Krishna, 2022. "Statistical inference for two Lindley populations under balanced joint progressive type-II censoring scheme," Computational Statistics, Springer, vol. 37(1), pages 263-286, March.
    2. A. Asgharzadeh & S. F. Bagheri & N. A. Ibrahim & M. R. Abubakar, 2020. "Optimal confidence regions for the two-parameter exponential distribution based on records," Computational Statistics, Springer, vol. 35(1), pages 309-326, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    2. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    3. E.I., Abdul Sathar & K.V., Viswakala, 2019. "Non-parametric estimation of Kullback–Leibler discrimination information based on censored data," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    4. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    5. Iman Makhdoom & Parviz Nasiri & Abbas Pak, 2016. "Bayesian approach for the reliability parameter of power Lindley distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 341-355, September.
    6. Wang, Shaochen & Weiß, Christian H., 2023. "New characterizations of the (discrete) Lindley distribution and their applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 310-322.
    7. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    8. Neha Goel & Hare Krishna, 2022. "Estimation in Residual lifetime Lindley distribution with Type II censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 363-374, February.
    9. K. Muralidharan & Pratima Bavagosai, 2023. "Instantaneous failure analysis on Lindley distribution under progressive type II censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1312-1339, August.
    10. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    11. Emrah Altun & Gauss M. Cordeiro, 2020. "The unit-improved second-degree Lindley distribution: inference and regression modeling," Computational Statistics, Springer, vol. 35(1), pages 259-279, March.
    12. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    13. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.
    14. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    15. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    16. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    17. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    18. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    19. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    20. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0788-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.