IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i12d10.1007_s13198-024-02571-w.html
   My bibliography  Save this article

Parametric and nonparametric estimation stress strength model based on copula function under first-failure progressively unified hybrid censoring schemes

Author

Listed:
  • Junmei Jia

    (Inner Mongolia University of Technology)

  • Hongyan Fan

    (Inner Mongolia University of Technology)

  • Cen Zhang

    (Inner Mongolia University of Technology)

Abstract

In the traditional interference of stress strength model, it is generally supposed that the strength variable and the stress variable are independent. However, in many engineering applications strength variable and the stress variable are dependent. To solve the situation where the strength variable and the stress variable are dependent, in this paper the dependent between strength and stress is considered, the correlation between strength and stress is described by Farlie–Gumbel–Morgenstern copula function. Three estimate methods (maximum likelihood estimation, Bayes estimator, kernel density estimation) are used to estimate the reliability for $$\delta =P(X

Suggested Citation

  • Junmei Jia & Hongyan Fan & Cen Zhang, 2024. "Parametric and nonparametric estimation stress strength model based on copula function under first-failure progressively unified hybrid censoring schemes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(12), pages 5700-5712, December.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:12:d:10.1007_s13198-024-02571-w
    DOI: 10.1007/s13198-024-02571-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02571-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02571-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filippo Domma & Sabrina Giordano, 2012. "A stress–strength model with dependent variables to measure household financial fragility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 375-389, August.
    2. Alessandro Barbiero, 2012. "Interval estimators for reliability: the bivariate normal case," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 501-512, June.
    3. Debasis Kundu & Rameshwar D. Gupta, 2005. "Estimation of P[Y > X] for generalized exponential distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(3), pages 291-308, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. J. S. Khan & Bushra Khatoon, 2020. "Statistical Inferences of $$R=P(X," Annals of Data Science, Springer, vol. 7(3), pages 525-545, September.
    2. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    3. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    4. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
    5. Abhimanyu Singh Yadav & S. K. Singh & Umesh Singh, 2019. "Bayesian estimation of $$R=P[Y," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 905-917, October.
    6. Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
    7. Joby K. Jose & M. Drisya, 2020. "Time-dependent stress–strength reliability models based on phase type distribution," Computational Statistics, Springer, vol. 35(3), pages 1345-1371, September.
    8. Wong, Augustine C.M. & Wu, Yan Yan, 2009. "A note on interval estimation of P(X," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3650-3658, August.
    9. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    10. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    11. Ehsan Fayyazishishavan & Serpil Kılıç Depren, 2021. "Inference of stress-strength reliability for two-parameter of exponentiated Gumbel distribution based on lower record values," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
    12. Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
    13. Kızılaslan, Fatih, 2017. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 36-62.
    14. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.
    15. Eloísa Díaz-Francés & José Montoya, 2013. "The simplicity of likelihood based inferences for P(X > Y) and for the ratio of means in the exponential model," Statistical Papers, Springer, vol. 54(2), pages 499-522, May.
    16. Gijbels, Irène & Herrmann, Klaus, 2014. "On the distribution of sums of random variables with copula-induced dependence," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 27-44.
    17. Nabakumar Jana & Somesh Kumar & Kashinath Chatterjee, 2016. "Bayes estimation for exponential distributions with common location parameter and applications to multi-state reliability models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2697-2712, November.
    18. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    19. Hejazi, Taha-Hossein & Badri, Hossein & Yang, Kai, 2019. "A Reliability-based Approach for Performance Optimization of Service Industries: An Application to Healthcare Systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1016-1025.
    20. A. James & N. Chandra & Nicy Sebastian, 2023. "Stress-strength reliability estimation for bivariate copula function with rayleigh marginals," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 196-215, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:12:d:10.1007_s13198-024-02571-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.