IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v57y2016i4d10.1007_s00362-016-0780-9.html
   My bibliography  Save this article

Iterative algorithms of biased estimation methods in binary logistic regression

Author

Listed:
  • M. Revan Özkale

    (Çukurova University)

Abstract

Logistic regression is a widely used method to model categorical response data, and maximum likelihood (ML) estimation has widespread use in logistic regression. Although ML method is the most used method to estimate the regression coefficients in logistic regression model, multicollinearity seriously affects the ML estimator. To remedy the undesirable effects of multicollinearity, estimators alternative to ML are proposed. Drawing on the similarities between the multiple linear and logistic regressions, ridge, Liu and two parameter estimators are proposed which are based on the ML estimator. On the other hand, first-order approximated ridge estimator is proposed for use in logistic regression. This study will present further solutions to the problem in the form of alternative estimators which reduce the effect of collinearity. Owing to this, first-order approximated Liu, iterative Liu and iterative two parameter estimators are proposed. A simulation study as well as real life application are carried out to ascertain the effect of sample size and degree of multicollinearity, in which the ML based, first-order approximated and iterative biased estimators are compared. Graphical representations are presented which support the effect of the shrinkage parameter on the mean square error and prediction mean square error of the biased estimators.

Suggested Citation

  • M. Revan Özkale, 2016. "Iterative algorithms of biased estimation methods in binary logistic regression," Statistical Papers, Springer, vol. 57(4), pages 991-1016, December.
  • Handle: RePEc:spr:stpapr:v:57:y:2016:i:4:d:10.1007_s00362-016-0780-9
    DOI: 10.1007/s00362-016-0780-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0780-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0780-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Kibria & Kristofer Månsson & Ghazi Shukur, 2012. "Performance of Some Logistic Ridge Regression Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 40(4), pages 401-414, December.
    2. Månsson, Kristofer & Kibria, B.M. Golam & Shukur, Ghazi, 2012. "On Liu estimators for the logit regression model," Economic Modelling, Elsevier, vol. 29(4), pages 1483-1488.
    3. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2006. "Using principal components for estimating logistic regression with high-dimensional multicollinear data," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1905-1924, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. H. Jadhav, 2020. "On linearized ridge logistic estimator in the presence of multicollinearity," Computational Statistics, Springer, vol. 35(2), pages 667-687, June.
    2. Özkale, M. Revan & Arıcan, Engin, 2015. "First-order r−d class estimator in binary logistic regression model," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 19-29.
    3. Adewale F. Lukman & B. M. Golam Kibria & Cosmas K. Nziku & Muhammad Amin & Emmanuel T. Adewuyi & Rasha Farghali, 2023. "K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    4. Lucadamo, Antonio & Camminatiello, Ida & D'Ambra, Antonello, 2021. "A statistical model for evaluating the patient satisfaction," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    5. Nagarajah Varathan & Pushpakanthie Wijekoon, 2019. "Logistic Liu Estimator under stochastic linear restrictions," Statistical Papers, Springer, vol. 60(3), pages 945-962, June.
    6. López-Delgado, P. & Diéguez-Soto, J., 2015. "Lone founders, types of private family businesses and firm performance," Journal of Family Business Strategy, Elsevier, vol. 6(2), pages 73-85.
    7. Fernández-Alcalá, R.M. & Navarro-Moreno, J. & Ruiz-Molina, J.C., 2009. "Statistical inference for doubly stochastic multichannel Poisson processes: A PCA approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4322-4331, October.
    8. Meisam Moghimbeygi & Anahita Nodehi, 2022. "Multinomial Principal Component Logistic Regression on Shape Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 578-599, November.
    9. O. I. Traore & P. Cristini & N. Favretto-Cristini & L. Pantera & P. Vieu & S. Viguier-Pla, 2019. "Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches," Computational Statistics, Springer, vol. 34(2), pages 631-652, June.
    10. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    11. Iqra Babar & Hamdi Ayed & Sohail Chand & Muhammad Suhail & Yousaf Ali Khan & Riadh Marzouki, 2021. "Modified Liu estimators in the linear regression model: An application to Tobacco data," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
    12. Morello, Thiago Fonseca & Piketty, Marie-Gabrielle & Gardner, Toby & Parry, Luke & Barlow, Jos & Ferreira, Joice & Tancredi, Nicola S., 2018. "Fertilizer Adoption by Smallholders in the Brazilian Amazon: Farm-level Evidence," Ecological Economics, Elsevier, vol. 144(C), pages 278-291.
    13. Islam Shofiqul & Anand Sonia & Hamid Jemila & Thabane Lehana & Beyene Joseph, 2017. "Comparing the performance of linear and nonlinear principal components in the context of high-dimensional genomic data integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 199-216, August.
    14. Mohamed R. Abonazel & Rasha A. Farghali, 2019. "Liu-Type Multinomial Logistic Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 203-225, December.
    15. André Betzer & Markus Doumet & Marc Goergen, 2015. "Disentangling the link between stock and accounting performance in acquisitions," The European Journal of Finance, Taylor & Francis Journals, vol. 21(9), pages 755-771, July.
    16. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    17. Manuel Escabias & Ana Aguilera & M. Aguilera-Morillo, 2014. "Functional PCA and Base-Line Logit Models," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 296-324, October.
    18. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.
    19. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    20. Yoon Lee & Sungchul Cho & Haejin Han & Kyoungmin Kim & Yongsuk Hong, 2017. "Heterogeneous Value of Water: Empirical Evidence in South Korea," Sustainability, MDPI, vol. 9(10), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:57:y:2016:i:4:d:10.1007_s00362-016-0780-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.