IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v57y2016i1p161-183.html
   My bibliography  Save this article

New multiple testing method under no dependency assumption, with application to multiple comparisons problem

Author

Listed:
  • Li Wang
  • Xingzhong Xu
  • Yong A

Abstract

Traditional multiple hypotheses testing mainly focuses on constructing stepwise procedures under some error rate control, such as familywise error rate (FWER), false discovery rate, and so forth. However, most of these procedures are obtained in independent case, and when there exists correlation across tests, the dependency may increase or decrease the chance of false rejections. In this paper, a totally different testing method is proposed, which doesn’t focus on specific error control, but pays attention to the overall performance of the collection of hypotheses and the structure utilization among hypotheses. Since the main purpose of multiple testing is to pick out the false ones from the whole hypotheses and present a rejection set, motivated by the principle of simple hypothesis testing, we give the final testing result based on the estimation of the set of all the true null hypotheses. Our method can be applied in any dependent case provided that a reasonable $$p$$ p -value can be obtained for each intersection hypothesis. We illustrate the new procedures with application to multiple comparisons problems. Theoretical results show the consistency of our method, and investigate their FWER behavior. Simulation results suggest that our procedures have a better overall performance than some existing procedures in dependent cases, especially in the total number of type I and type II errors. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • Li Wang & Xingzhong Xu & Yong A, 2016. "New multiple testing method under no dependency assumption, with application to multiple comparisons problem," Statistical Papers, Springer, vol. 57(1), pages 161-183, March.
  • Handle: RePEc:spr:stpapr:v:57:y:2016:i:1:p:161-183
    DOI: 10.1007/s00362-014-0650-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-014-0650-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-014-0650-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoav Benjamini & Abba M. Krieger & Daniel Yekutieli, 2006. "Adaptive linear step-up procedures that control the false discovery rate," Biometrika, Biometrika Trust, vol. 93(3), pages 491-507, September.
    2. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    3. Yuliang Yin, 2012. "A new Bayesian procedure for testing point null hypotheses," Computational Statistics, Springer, vol. 27(2), pages 237-249, June.
    4. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Rejoinder on: Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 461-471, November.
    5. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    6. Gudrun Bernhard & Markus Klein & Gerhard Hommel, 2004. "Global and multiple test procedures using ordered p-values—a review," Statistical Papers, Springer, vol. 45(1), pages 1-14, January.
    7. Joseph P. Romano & Michael Wolf, "undated". "Control of Generalized Error Rates in Multiple Testing," IEW - Working Papers 245, Institute for Empirical Research in Economics - University of Zurich.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    2. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
    3. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    4. Joseph P. Romano & Michael Wolf, 2008. "Balanced Control of Generalized Error Rates," IEW - Working Papers 379, Institute for Empirical Research in Economics - University of Zurich.
    5. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    6. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    7. Moon, H.R. & Perron, B., 2012. "Beyond panel unit root tests: Using multiple testing to determine the nonstationarity properties of individual series in a panel," Journal of Econometrics, Elsevier, vol. 169(1), pages 29-33.
    8. Ferreira José A. & Berkhof Johannes & Souverein Olga & Zwinderman Koos, 2009. "A Multiple Testing Approach to High-Dimensional Association Studies with an Application to the Detection of Associations between Risk Factors of Heart Disease and Genetic Polymorphisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-58, January.
    9. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    10. John A. List & Azeem M. Shaikh & Atom Vayalinkal, 2023. "Multiple testing with covariate adjustment in experimental economics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 920-939, September.
    11. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    12. Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
    13. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    14. Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.
    15. Matteo M. Galizzi & Daniel Navarro-Martinez, 2019. "On the External Validity of Social Preference Games: A Systematic Lab-Field Study," Management Science, INFORMS, vol. 65(3), pages 976-1002, March.
    16. Hassler Uwe & Werkmann Verena, 2014. "Multiple Comparisons and Joint Significance in Panel Unit Root Testing with Evidence on International Interest Rate Linkage," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(1), pages 23-43, February.
    17. de Uña-Alvarez Jacobo, 2012. "The Beta-Binomial SGoF method for multiple dependent tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-32, May.
    18. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Stephan Smeekes, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 398-415, May.
    19. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    20. Laurini, Márcio Poletti & Sanvicente, Antônio Zoratto & Monteiro, Rogério da Costa, 2011. "Generalized Tests of Investment Fund Performance," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:57:y:2016:i:1:p:161-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.