IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i4p1145-1158.html
   My bibliography  Save this article

Wavelet estimation of the memory parameter for long range dependent random fields

Author

Listed:
  • Lihong Wang
  • Jinde Wang

Abstract

In this paper we study the estimation of the spatial long memory parameter for stationary long range dependent random fields using wavelet methods. We first show the relation between the wavelet coefficients of the random fields and its long memory parameter. Based on this relation, we construct a log-regression wavelet estimator of the long memory parameter. Under some mild regularity assumptions, the asymptotic properties of the estimators are investigated. Finally, a small simulation study illustrates the method. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Lihong Wang & Jinde Wang, 2014. "Wavelet estimation of the memory parameter for long range dependent random fields," Statistical Papers, Springer, vol. 55(4), pages 1145-1158, November.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:4:p:1145-1158
    DOI: 10.1007/s00362-013-0558-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-013-0558-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-013-0558-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, University Library of Munich, Germany.
    2. E. Moulines & F. Roueff & M. S. Taqqu, 2007. "On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 155-187, March.
    3. Jean‐Marc Bardet & Pierre R. Bertrand, 2010. "A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 458-476, September.
    4. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.
    2. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    3. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    4. SangKun Bae & Mark J. Jensen, 1998. "Long-Run Neutrality in a Long-Memory Model," Macroeconomics 9809006, University Library of Munich, Germany, revised 21 Apr 1999.
    5. Lim, C.Y. & Meerschaert, M.M. & Scheffler, H.-P., 2014. "Parameter estimation for operator scaling random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 172-183.
    6. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    7. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    8. Muniandy, Sithi V. & Uning, Rosemary, 2006. "Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 585-598.
    9. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    10. Hira Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 165-193, February.
    11. Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.
    12. F. Roueff & M. S. Taqqu, 2009. "Asymptotic normality of wavelet estimators of the memory parameter for linear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 534-558, September.
    13. Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
    14. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    15. Shapour Mohammadi & Ahmad Pouyanfar, 2011. "Behaviour of stock markets' memories," Applied Financial Economics, Taylor & Francis Journals, vol. 21(3), pages 183-194.
    16. Lin Shinn-Juh & Stevenson Maxwell, 2001. "Wavelet Analysis of the Cost-of-Carry Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-17, April.
    17. Li, Yushu, 2012. "Estimating Long Memory Causality Relationships by a Wavelet Method," Working Papers 2012:15, Lund University, Department of Economics.
    18. Brandon Whitcher, 2000. "Wavelet-Based Estimation Procedures For Seasonal Long-Memory Models," Computing in Economics and Finance 2000 148, Society for Computational Economics.
    19. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    20. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:4:p:1145-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.