IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v53y2012i1p133-149.html
   My bibliography  Save this article

Multivariate normal distribution approaches for dependently truncated data

Author

Listed:
  • Takeshi Emura
  • Yoshihiko Konno

Abstract

Many statistical methods for truncated data rely on the independence assumption regarding the truncation variable. In many application studies, however, the dependence between a variable X of interest and its truncation variable L plays a fundamental role in modeling data structure. For truncated data, typical interest is in estimating the marginal distributions of (L, X) and often in examining the degree of the dependence between X and L. To relax the independence assumption, we present a method of fitting a parametric model on (L, X), which can easily incorporate the dependence structure on the truncation mechanisms. Focusing on a specific example for the bivariate normal distribution, the score equations and Fisher information matrix are provided. A robust procedure based on the bivariate t-distribution is also considered. Simulations are performed to examine finite-sample performances of the proposed method. Extension of the proposed method to doubly truncated data is briefly discussed. Copyright Springer-Verlag 2012

Suggested Citation

  • Takeshi Emura & Yoshihiko Konno, 2012. "Multivariate normal distribution approaches for dependently truncated data," Statistical Papers, Springer, vol. 53(1), pages 133-149, February.
  • Handle: RePEc:spr:stpapr:v:53:y:2012:i:1:p:133-149
    DOI: 10.1007/s00362-010-0321-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-010-0321-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-010-0321-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Sankaran & S. Sunoj, 2004. "Identification of models using failure rate and mean residual life of doubly truncated random variables," Statistical Papers, Springer, vol. 45(1), pages 97-109, January.
    2. Shaul Bar-Lev & Benzion Boukai, 2009. "A characterization of the exponential distribution by means of coincidence of location and truncated densities," Statistical Papers, Springer, vol. 50(2), pages 403-405, March.
    3. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    4. Emura, Takeshi & Wang, Weijing, 2010. "Testing quasi-independence for truncation data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 223-239, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
    2. Achim Dörre, 2020. "Bayesian estimation of a lifetime distribution under double truncation caused by time-restricted data collection," Statistical Papers, Springer, vol. 61(3), pages 945-965, June.
    3. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    4. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    5. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    6. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Jing Qian & Rebecca A. Betensky, 2023. "Nonparametric bounds for the survivor function under general dependent truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 327-357, March.
    8. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    9. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    2. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    3. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    4. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    5. Pao-Sheng Shen, 2011. "Testing quasi-independence for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 753-761.
    6. Emura, Takeshi & Wang, Weijing, 2009. "Testing Quasi-independence for Truncation Data," MPRA Paper 58582, University Library of Munich, Germany.
    7. Emura, Takeshi & Wang, Weijing, 2012. "Nonparametric maximum likelihood estimation for dependent truncation data based on copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 171-188.
    8. Antonio Di Crescenzo & Abdolsaeed Toomaj, 2022. "Weighted Mean Inactivity Time Function with Applications," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    9. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    10. Yun-Hee Choi & Laurent Briollais & Aung K. Win & John Hopper & Dan Buchanan & Mark Jenkins & Lajmi Lakhal-Chaieb, 2017. "Modeling of successive cancer risks in Lynch syndrome families in the presence of competing risks using copulas," Biometrics, The International Biometric Society, vol. 73(1), pages 271-282, March.
    11. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    12. Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
    13. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    14. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    15. M. Khorashadizadeh & A. Roknabadi & G. Borzadaran, 2013. "Variance residual life function based on double truncation," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 175-188, September.
    16. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    17. Antonio Di Crescenzo & Patrizia Di Gironimo & Suchandan Kayal, 2020. "Analysis of the Past Lifetime in a Replacement Model through Stochastic Comparisons and Differential Entropy," Mathematics, MDPI, vol. 8(8), pages 1-18, July.
    18. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    19. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Derumigny Alexis & Fermanian Jean-David, 2019. "On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior," Dependence Modeling, De Gruyter, vol. 7(1), pages 292-321, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:53:y:2012:i:1:p:133-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.