IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v198y2024ics0167947324000811.html
   My bibliography  Save this article

Inference for high-dimensional linear expectile regression with de-biasing method

Author

Listed:
  • Li, Xiang
  • Li, Yu-Ning
  • Zhang, Li-Xin
  • Zhao, Jun

Abstract

The methodology for the inference problem in high-dimensional linear expectile regression is developed. By transforming the expectile loss into a weighted-least-squares form and applying a de-biasing strategy, Wald-type tests for multiple constraints within a regularized framework are established. An estimator for the pseudo-inverse of the generalized Hessian matrix in high dimension is constructed using general amenable regularizers, including Lasso and SCAD, with its consistency demonstrated through a novel proof technique. Simulation studies and real data applications demonstrate the efficacy of the proposed test statistic in both homoscedastic and heteroscedastic scenarios.

Suggested Citation

  • Li, Xiang & Li, Yu-Ning & Zhang, Li-Xin & Zhao, Jun, 2024. "Inference for high-dimensional linear expectile regression with de-biasing method," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000811
    DOI: 10.1016/j.csda.2024.107997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000811
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Bin & Gao, Xiaoli, 2022. "High-dimensional robust approximated M-estimators for mean regression with asymmetric data," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Jun Zhao & Yi Zhang, 2018. "Variable selection in expectile regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(7), pages 1731-1746, April.
    3. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    4. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
    5. Zhao, Jun & Chen, Yingyu & Zhang, Yi, 2018. "Expectile regression for analyzing heteroscedasticity in high dimension," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 304-311.
    6. Ciuperca, Gabriela, 2021. "Variable selection in high-dimensional linear model with possibly asymmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    7. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    8. T. Tony Cai & Zijian Guo & Rong Ma, 2023. "Statistical Inference for High-Dimensional Generalized Linear Models With Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1319-1332, April.
    9. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    11. Taamouti Abderrahim, 2015. "Stock market’s reaction to money supply: a nonparametric analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 669-689, December.
    12. VIAL, Jean-Philippe, 1982. "Strong convexity of sets and functions," LIDAM Reprints CORE 475, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Q.F. Xu & X.H. Ding & C.X. Jiang & K.M. Yu & L. Shi, 2021. "An elastic-net penalized expectile regression with applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(12), pages 2205-2230, September.
    14. Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
    15. Xianyang Zhang & Guang Cheng, 2017. "Simultaneous Inference for High-Dimensional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 757-768, April.
    16. Jun Zhao & Guan’ao Yan & Yi Zhang, 2022. "Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity," Statistical Papers, Springer, vol. 63(1), pages 1-28, February.
    17. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    18. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    19. Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
    20. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    21. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    22. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciuperca, Gabriela, 2021. "Variable selection in high-dimensional linear model with possibly asymmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Mohamed Ouhourane & Karim Oualkacha & Archer Yi Yang, 2024. "Group penalized expectile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1251-1313, November.
    3. Jun Zhao & Guan’ao Yan & Yi Zhang, 2022. "Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity," Statistical Papers, Springer, vol. 63(1), pages 1-28, February.
    4. Yundong Tu & Siwei Wang, 2023. "Variable Screening and Model Averaging for Expectile Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 574-598, June.
    5. Gabriela Ciuperca, 2022. "Real-time detection of a change-point in a linear expectile model," Statistical Papers, Springer, vol. 63(4), pages 1323-1367, August.
    6. Zhao, Jun & Chen, Yingyu & Zhang, Yi, 2018. "Expectile regression for analyzing heteroscedasticity in high dimension," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 304-311.
    7. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    8. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    9. Xiaorui Zhu & Yichen Qin & Peng Wang, 2023. "Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models," Papers 2307.07574, arXiv.org, revised Jan 2025.
    10. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    12. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    13. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    14. Wang, Yining & Wang, Jialei & Balakrishnan, Sivaraman & Singh, Aarti, 2019. "Rate optimal estimation and confidence intervals for high-dimensional regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    15. Fan, Jianqing & Guo, Yongyi & Jiang, Bai, 2022. "Adaptive Huber regression on Markov-dependent data," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 802-818.
    16. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-53, February.
    18. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
    19. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    20. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.