IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v128y2018icp58-72.html
   My bibliography  Save this article

Quasi-likelihood estimation of the single index conditional variance model

Author

Listed:
  • Zhang, Hongfan

Abstract

This paper investigates estimation methods for the conditional variance function with a single index structure. We introduce two estimators of the single index parameter vector through maximizing local linear quasi-likelihood functions. The resulting parameter index estimators can achieve root-n consistency and the variance function estimator can maintain positivity. We show that the proposed methods can estimate the conditional variance with the same asymptotic efficiency as if the conditional mean function is given. Asymptotic distributions of the proposed estimators are also derived. Simulation studies and a real data application demonstrate our estimation approaches.

Suggested Citation

  • Zhang, Hongfan, 2018. "Quasi-likelihood estimation of the single index conditional variance model," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 58-72.
  • Handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:58-72
    DOI: 10.1016/j.csda.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301464
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke-Li Xu & Peter C. B. Phillips, 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 518-528, October.
    2. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    5. Xiangrong Yin & R. Dennis Cook, 2005. "Direction estimation in single-index regressions," Biometrika, Biometrika Trust, vol. 92(2), pages 371-384, June.
    6. Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1112-1137, December.
    7. Ziegelmann, Flavio A., 2002. "Nonparametric Estimation Of Volatility Functions: The Local Exponential Estimator," Econometric Theory, Cambridge University Press, vol. 18(4), pages 985-991, August.
    8. Yu, K. & Jones, M.C., 2004. "Likelihood-Based Local Linear Estimation of the Conditional Variance Function," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 139-144, January.
    9. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    10. Yanyuan Ma & Liping Zhu, 2013. "A Review on Dimension Reduction," International Statistical Review, International Statistical Institute, vol. 81(1), pages 134-150, April.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. da Silva, Murilo & Sriram, T.N. & Ke, Yuan, 2023. "Dimension reduction in time series under the presence of conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    3. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    4. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
    5. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    6. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    7. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    8. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    9. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    11. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    12. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    13. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    14. Cheng, Qing & Zhu, Liping, 2017. "On relative efficiency of principal Hessian directions," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 108-113.
    15. Xu, Ke-Li & Phillips, Peter C. B., 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 518-528.
    16. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    17. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    18. Pérez-González, A. & Vilar-Fernández, J.M. & González-Manteiga, W., 2010. "Nonparametric variance function estimation with missing data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1123-1142, May.
    19. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    20. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:58-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.