IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v91y2023i2p269-293.html
   My bibliography  Save this article

Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching

Author

Listed:
  • Daniela Marella
  • Danny Pfeffermann

Abstract

Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data.

Suggested Citation

  • Daniela Marella & Danny Pfeffermann, 2023. "Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching," International Statistical Review, International Statistical Institute, vol. 91(2), pages 269-293, August.
  • Handle: RePEc:bla:istatr:v:91:y:2023:i:2:p:269-293
    DOI: 10.1111/insr.12524
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12524
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pier Luigi Conti & Daniela Marella & Andrea Neri, 2017. "Statistical matching and uncertainty analysis in combining household income and expenditure data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 485-505, August.
    2. Rubin, Donald B, 1986. "Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 87-94, January.
    3. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    4. Anton Korinek & Johan Mistiaen & Martin Ravallion, 2006. "Survey nonresponse and the distribution of income," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 4(1), pages 33-55, April.
    5. Pier Luigi Conti & Daniela Marella & Mauro Scanu, 2016. "Statistical Matching Analysis for Complex Survey Data With Applications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1715-1725, October.
    6. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Elena Dalla & Menon Martina & Perali Federico, 2019. "An Integrated Database to Measure Living Standards," Journal of Official Statistics, Sciendo, vol. 35(3), pages 531-576, September.
    2. Andrea Cutillo & Mauro Scanu, 2020. "A Mixed Approach for Data Fusion of HBS and SILC," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(2), pages 411-437, July.
    3. Claramunt González, Juan & van Delden, Arnout & de Waal, Ton, 2023. "Assessment of the effect of constraints in a new multivariate mixed method for statistical matching," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    4. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    5. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    6. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    7. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    8. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    9. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    10. Lamarche, Pierre, 2017. "Estimating consumption in the HFCS: Experimental results on the first wave of the HFCS," Statistics Paper Series 22, European Central Bank.
    11. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    12. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    13. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    14. Zhang, Rongmao & Peng, Liang & Qi, Yongcheng, 2012. "Jackknife-blockwise empirical likelihood methods under dependence," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 56-72, February.
    15. Zhouping Li & Yuanyuan Lin & Guoliang Zhou & Wang Zhou, 2014. "Empirical likelihood for least absolute relative error regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 86-99, March.
    16. Brunori, Paolo & Salas-Rojo, Pedro & Verme, Paolo, 2022. "Estimating Inequality with Missing Incomes," GLO Discussion Paper Series 1138, Global Labor Organization (GLO).
    17. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    18. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    19. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    21. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:91:y:2023:i:2:p:269-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.