IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i4d10.1007_s00180-021-01099-y.html
   My bibliography  Save this article

Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets

Author

Listed:
  • Maria Lucia Parrella

    (Università of Salerno)

  • Giuseppina Albano

    (Università of Salerno)

  • Cira Perna

    (Università of Salerno)

  • Michele La Rocca

    (Università of Salerno)

Abstract

Missing data reconstruction is a critical step in the analysis and mining of spatio-temporal data. However, few studies comprehensively consider missing data patterns, sample selection and spatio-temporal relationships. To take into account the uncertainty in the point forecast, some prediction intervals may be of interest. In particular, for (possibly long) missing sequences of consecutive time points, joint prediction regions are desirable. In this paper we propose a bootstrap resampling scheme to construct joint prediction regions that approximately contain missing paths of a time components in a spatio-temporal framework, with global probability $$1-\alpha $$ 1 - α . In many applications, considering the coverage of the whole missing sample-path might appear too restrictive. To perceive more informative inference, we also derive smaller joint prediction regions that only contain all elements of missing paths up to a small number k of them with probability $$1-\alpha $$ 1 - α . A simulation experiment is performed to validate the empirical performance of the proposed joint bootstrap prediction and to compare it with some alternative procedures based on a simple nominal coverage correction, loosely inspired by the Bonferroni approach, which are expected to work well standard scenarios.

Suggested Citation

  • Maria Lucia Parrella & Giuseppina Albano & Cira Perna & Michele La Rocca, 2021. "Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets," Computational Statistics, Springer, vol. 36(4), pages 2917-2938, December.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01099-y
    DOI: 10.1007/s00180-021-01099-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01099-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01099-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    2. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    3. Qu, Xi & Lee, Lung-fei & Yang, Chao, 2021. "Estimation of a SAR model with endogenous spatial weights constructed by bilateral variables," Journal of Econometrics, Elsevier, vol. 221(1), pages 180-197.
    4. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    5. Andrés Alonso & Ana Sipols & Silvia Quintas, 2013. "A single-index model procedure for interpolation intervals in time series," Computational Statistics, Springer, vol. 28(4), pages 1463-1484, August.
    6. Gao, Zhaoxing & Ma, Yingying & Wang, Hansheng & Yao, Qiwei, 2019. "Banded spatio-temporal autoregressions," Journal of Econometrics, Elsevier, vol. 208(1), pages 211-230.
    7. Hongtai Yang & Jianjiang Yang & Lee D Han & Xiaohan Liu & Li Pu & Shih-miao Chin & Ho-ling Hwang, 2018. "A Kriging based spatiotemporal approach for traffic volume data imputation," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-11, April.
    8. Edwin Choi & Peter Hall, 2000. "Bootstrap confidence regions computed from autoregressions of arbitrary order," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 461-477.
    9. Dou, Baojun & Parrella, Maria Lucia & Yao, Qiwei, 2016. "Generalized Yule–Walker estimation for spatio-temporal models with unknown diagonal coefficients," Journal of Econometrics, Elsevier, vol. 194(2), pages 369-382.
    10. Crescenza Calculli & Alessandro Fassò & Francesco Finazzi & Alessio Pollice & Annarita Turnone, 2015. "Maximum likelihood estimation of the multivariate hidden dynamic geostatistical model with application to air quality in Apulia, Italy," Environmetrics, John Wiley & Sons, Ltd., vol. 26(6), pages 406-417, September.
    11. Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
    12. Maria Lucia Parrella & Giuseppina Albano & Michele La Rocca & Cira Perna, 2019. "Reconstructing missing data sequences in multivariate time series: an application to environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 359-383, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanno Reuvers & Etienne Wijler, 2021. "Sparse Generalized Yule-Walker Estimation for Large Spatio-temporal Autoregressions with an Application to NO2 Satellite Data," Papers 2108.02864, arXiv.org, revised Dec 2021.
    2. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    3. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    4. Ayden Higgins & Federico Martellosio, 2019. "Shrinkage Estimation of Network Spillovers with Factor Structured Errors," Papers 1909.02823, arXiv.org, revised Nov 2021.
    5. Maria Lucia Parrella & Giuseppina Albano & Michele La Rocca & Cira Perna, 2019. "Reconstructing missing data sequences in multivariate time series: an application to environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 359-383, June.
    6. Yating Wan & Minya Xu & Hui Huang & Song Xi Chen, 2021. "A spatio‐temporal model for the analysis and prediction of fine particulate matter concentration in Beijing," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    7. Higgins, Ayden & Martellosio, Federico, 2023. "Shrinkage estimation of network spillovers with factor structured errors," Journal of Econometrics, Elsevier, vol. 233(1), pages 66-87.
    8. repec:rri:wpaper:201303 is not listed on IDEAS
    9. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    10. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    11. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    12. Esposito, Piero & Patriarca, Fabrizio & Salvati, Luca, 2018. "Tertiarization and land use change: The case of Italy," Economic Modelling, Elsevier, vol. 71(C), pages 80-86.
    13. Askarov, Zohid & Doucouliagos, Hristos, 2015. "Spatial aid spillovers during transition," European Journal of Political Economy, Elsevier, vol. 40(PA), pages 79-95.
    14. Atems, Bebonchu, 2013. "The spatial dynamics of growth and inequality: Evidence using U.S. county-level data," Economics Letters, Elsevier, vol. 118(1), pages 19-22.
    15. Régis Barnichon & Geert Mesters, 2020. "Optimal policy perturbations," Economics Working Papers 1716, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Tan, Xiujie & Yan, Yaxue & Dong, Yuyang, 2022. "Peer effect in green credit induced green innovation: An empirical study from China's Green Credit Guidelines," Resources Policy, Elsevier, vol. 76(C).
    17. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    18. Fassò, A. & Finazzi, F. & Madonna, F., 2018. "Statistical issues in radiosonde observation of atmospheric temperature and humidity profiles," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 97-100.
    19. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    20. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," CESifo Working Paper Series 5428, CESifo.
    21. Takeshi Aida, 2020. "Revisiting suicide rate during wartime: Evidence from the Sri Lankan civil war," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01099-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.