IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v29y2020i4d10.1007_s10260-020-00509-7.html
   My bibliography  Save this article

Sliced inverse median difference regression

Author

Listed:
  • Stephen Babos

    (Cardiff University)

  • Andreas Artemiou

    (Cardiff University)

Abstract

In this paper we propose a sufficient dimension reduction algorithm based on the difference of inverse medians. The classic methodology based on inverse means in each slice was recently extended, by using inverse medians, to robustify existing methodology at the presence of outliers. Our effort is focused on using differences between inverse medians in pairs of slices. We demonstrate that our method outperforms existing methods at the presence of outliers. We also propose a second algorithm which is not affected by the ordering of slices when the response variable is categorical with no underlying ordering of its values.

Suggested Citation

  • Stephen Babos & Andreas Artemiou, 2020. "Sliced inverse median difference regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 937-954, December.
  • Handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00509-7
    DOI: 10.1007/s10260-020-00509-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00509-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00509-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    2. Bura, E. & Yang, J., 2011. "Dimension estimation in sufficient dimension reduction: A unifying approach," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 130-142, January.
    3. Zhu, Li-Ping & Zhu, Li-Xing & Feng, Zheng-Hui, 2010. "Dimension Reduction in Regressions Through Cumulative Slicing Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1455-1466.
    4. Artemiou, Andreas & Tian, Lipu, 2015. "Using sliced inverse mean difference for sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 184-190.
    5. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    6. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    7. Yongwu Shao & R. Dennis Cook & Sanford Weisberg, 2007. "Marginal tests with sliced average variance estimation," Biometrika, Biometrika Trust, vol. 94(2), pages 285-296.
    8. Wei Luo & Bing Li, 2016. "Combining eigenvalues and variation of eigenvectors for order determination," Biometrika, Biometrika Trust, vol. 103(4), pages 875-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Babos & Andreas Artemiou, 2021. "Cumulative Median Estimation for Sufficient Dimension Reduction," Stats, MDPI, vol. 4(1), pages 1-8, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Babos & Andreas Artemiou, 2021. "Cumulative Median Estimation for Sufficient Dimension Reduction," Stats, MDPI, vol. 4(1), pages 1-8, February.
    2. Artemiou, Andreas & Tian, Lipu, 2015. "Using sliced inverse mean difference for sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 184-190.
    3. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    4. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    5. Shih‐Hao Huang & Kerby Shedden & Hsin‐wen Chang, 2023. "Inference for the dimension of a regression relationship using pseudo‐covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2394-2403, September.
    6. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    7. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    8. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.
    9. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    10. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    12. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    13. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    14. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
    15. Jang, Hyun Jung & Shin, Seung Jun & Artemiou, Andreas, 2023. "Principal weighted least square support vector machine: An online dimension-reduction tool for binary classification," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    16. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    17. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    18. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    19. Dong, Yuexiao & Li, Zeda, 2024. "A note on marginal coordinate test in sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 204(C).
    20. Nordhausen, Klaus & Ruiz-Gazen, Anne, 2022. "On the usage of joint diagonalization in multivariate statistics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00509-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.