IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v204y2024ics0167715223001712.html
   My bibliography  Save this article

A note on marginal coordinate test in sufficient dimension reduction

Author

Listed:
  • Dong, Yuexiao
  • Li, Zeda

Abstract

We revisit marginal coordinate hypotheses (MCH) (Cook, 2004) under the framework of testing predictor contributions to the response without a parametric model. A new test for MCH is proposed as an extension of Yu et al. (2016).

Suggested Citation

  • Dong, Yuexiao & Li, Zeda, 2024. "A note on marginal coordinate test in sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001712
    DOI: 10.1016/j.spl.2023.109947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223001712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    2. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
    3. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    4. Yu, Zhou & Dong, Yuexiao & Huang, Mian, 2014. "General directional regression," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 94-104.
    5. Yongwu Shao & R. Dennis Cook & Sanford Weisberg, 2007. "Marginal tests with sliced average variance estimation," Biometrika, Biometrika Trust, vol. 94(2), pages 285-296.
    6. Yanyuan Ma & Liping Zhu, 2013. "A Review on Dimension Reduction," International Statistical Review, International Statistical Institute, vol. 81(1), pages 134-150, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
    3. Stephen Babos & Andreas Artemiou, 2020. "Sliced inverse median difference regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 937-954, December.
    4. Alothman, Ahmad & Dong, Yuexiao & Artemiou, Andreas, 2018. "On dual model-free variable selection with two groups of variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 366-377.
    5. Yu, Zhou & Dong, Yuexiao & Guo, Ranwei, 2013. "On determining the structural dimension via directional regression," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 987-992.
    6. Artemiou, Andreas & Tian, Lipu, 2015. "Using sliced inverse mean difference for sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 184-190.
    7. Yu, Zhou & Zhu, Lixing & Wen, Xuerong Meggie, 2012. "On model-free conditional coordinate tests for regressions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 61-72.
    8. Yang Liu & Francesca Chiaromonte & Bing Li, 2017. "Structured Ordinary Least Squares: A Sufficient Dimension Reduction approach for regressions with partitioned predictors and heterogeneous units," Biometrics, The International Biometric Society, vol. 73(2), pages 529-539, June.
    9. Stephen Babos & Andreas Artemiou, 2021. "Cumulative Median Estimation for Sufficient Dimension Reduction," Stats, MDPI, vol. 4(1), pages 1-8, February.
    10. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    11. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    12. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.
    13. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    14. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    15. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    16. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    17. Dong, Yuexiao & Yang, Chaozheng & Yu, Zhou, 2016. "On permutation tests for predictor contribution in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 81-91.
    18. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    19. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    20. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.