IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v15y2007i3d10.1007_s10260-006-0029-1.html
   My bibliography  Save this article

Influence functions of two families of robust estimators under proportional scatter matrices

Author

Listed:
  • Graciela Boente

    (Universidad de Buenos Aires and CONICET
    Ciudad Universitaria)

  • Frank Critchley

    (The Open University)

  • Liliana Orellana

    (Harvard University)

Abstract

In this paper, under a proportional model, two families of robust estimates for the proportionality constants, the common principal axes and their size are discussed. The first approach is obtained by plugging robust scatter matrices on the maximum likelihood equations for normal data. A projection- pursuit and a modified projection-pursuit approach, adapted to the proportional setting, are also considered. For all families of estimates, partial influence functions are obtained and asymptotic variances are derived from them. The performance of the estimates is compared through a Monte Carlo study.

Suggested Citation

  • Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
  • Handle: RePEc:spr:stmapp:v:15:y:2007:i:3:d:10.1007_s10260-006-0029-1
    DOI: 10.1007/s10260-006-0029-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-006-0029-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-006-0029-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flury, Bernhard K., 1986. "Proportionality of k covariance matrices," Statistics & Probability Letters, Elsevier, vol. 4(1), pages 29-33, January.
    2. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2006. "General projection-pursuit estimators for the common principal components model: influence functions and Monte Carlo study," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 124-147, January.
    3. Graciela Boente, 2002. "Influence functions and outlier detection under the common principal components model: A robust approach," Biometrika, Biometrika Trust, vol. 89(4), pages 861-875, December.
    4. Bernhard Flury & Martin Schmid & A. Narayanan, 1994. "Error rates in quadratic discrimination with constraints on the covariance matrices," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 101-120, March.
    5. Pires, Ana M. & Branco, João A., 2002. "Partial Influence Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 451-468, November.
    6. Flury, Bernhard W. & Schmid, Martin J., 1992. "Quadratic discriminant functions with constraints on the covariance matrices: Some asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 244-261, February.
    7. Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    2. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    3. Boente, Graciela & Molina, Julieta & Sued, Mariela, 2010. "On the asymptotic behavior of general projection-pursuit estimators under the common principal components model," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 228-235, February.
    4. Luca Bagnato & Antonio Punzo, 2021. "Unconstrained representation of orthogonal matrices with application to common principal components," Computational Statistics, Springer, vol. 36(2), pages 1177-1195, June.
    5. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    6. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    7. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2010. "Detecting influential observations in principal components and common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2967-2975, December.
    8. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2006. "General projection-pursuit estimators for the common principal components model: influence functions and Monte Carlo study," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 124-147, January.
    9. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    10. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    11. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    12. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    13. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    14. Paindaveine, Davy & Rasoafaraniaina, Rondrotiana Joséa & Verdebout, Thomas, 2017. "Preliminary test estimation for multi-sample principal components," Econometrics and Statistics, Elsevier, vol. 2(C), pages 106-116.
    15. B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
    16. Graciela Boente & Ana Pires & Isabel Rodrigues, 2008. "Estimators for the common principal components model based on reweighting: influence functions and Monte Carlo study," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 189-218, March.
    17. A. García-Pérez, 2012. "A linear approximation to the power function of a test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 855-875, October.
    18. Perignon, Christophe & Smith, Daniel R. & Villa, Christophe, 2007. "Why common factors in international bond returns are not so common," Journal of International Money and Finance, Elsevier, vol. 26(2), pages 284-304, March.
    19. A. Silva & Paula Brito, 2015. "Discriminant Analysis of Interval Data: An Assessment of Parametric and Distance-Based Approaches," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 516-541, October.
    20. Prendergast, Luke A. & Smith, Jodie A., 2022. "Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:15:y:2007:i:3:d:10.1007_s10260-006-0029-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.